/* FasTC * Copyright (c) 2014 University of North Carolina at Chapel Hill. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for educational, research, and non-profit purposes, without * fee, and without a written agreement is hereby granted, provided that the * above copyright notice, this paragraph, and the following four paragraphs * appear in all copies. * * Permission to incorporate this software into commercial products may be * obtained by contacting the authors or the Office of Technology Development * at the University of North Carolina at Chapel Hill . * * This software program and documentation are copyrighted by the University of * North Carolina at Chapel Hill. The software program and documentation are * supplied "as is," without any accompanying services from the University of * North Carolina at Chapel Hill or the authors. The University of North * Carolina at Chapel Hill and the authors do not warrant that the operation of * the program will be uninterrupted or error-free. The end-user understands * that the program was developed for research purposes and is advised not to * rely exclusively on the program for any reason. * * IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE * AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, * OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF * THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA * AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY * DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY * STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON * AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND * THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, * ENHANCEMENTS, OR MODIFICATIONS. * * Please send all BUG REPORTS to . * * The authors may be contacted via: * * Pavel Krajcevski * Dept of Computer Science * 201 S Columbia St * Frederick P. Brooks, Jr. Computer Science Bldg * Chapel Hill, NC 27599-3175 * USA * * */ #include "gtest/gtest.h" #include "VectorBase.h" static const float kEpsilon = 1e-6; TEST(VectorBase, Constructors) { FasTC::VectorBase v3f; FasTC::VectorBase v1d; FasTC::VectorBase v7i; FasTC::VectorBase v16u; #define TEST_VECTOR_COPY_CONS(v, t, n) \ do { \ FasTC::VectorBase d##v (v); \ for(int i = 0; i < n; i++) { \ EXPECT_EQ(d##v [i], v[i]); \ } \ } while(0) \ TEST_VECTOR_COPY_CONS(v3f, float, 3); TEST_VECTOR_COPY_CONS(v1d, double, 1); TEST_VECTOR_COPY_CONS(v7i, int, 7); TEST_VECTOR_COPY_CONS(v16u, unsigned, 16); #undef TEST_VECTOR_COPY_CONS } TEST(VectorBase, Accessors) { FasTC::VectorBase v3f; v3f[0] = 1.0f; v3f[1] = -2.3f; v3f[2] = 1000; for(int i = 0; i < 3; i++) { EXPECT_EQ(v3f[i], v3f(i)); } v3f(0) = -1.0f; v3f(1) = 2.3f; v3f(2) = -1000; for(int i = 0; i < 3; i++) { EXPECT_EQ(v3f(i), v3f[i]); } } TEST(VectorBase, PointerConversion) { FasTC::VectorBase v3f; v3f[0] = 1.0f; v3f[1] = -2.3f; v3f[2] = 1000; float cmp[3] = { 1.0f, -2.3f, 1000 }; const float *v3fp = v3f; int result = memcmp(cmp, v3fp, 3 * sizeof(float)); EXPECT_EQ(result, 0); cmp[0] = -1.0f; cmp[1] = 2.3f; cmp[2] = 1000.0f; v3f = cmp; for(int i = 0; i < 3; i++) { EXPECT_EQ(v3f[i], cmp[i]); } } TEST(VectorBase, CastVector) { FasTC::VectorBase v3f; FasTC::VectorBase v3d = v3f; FasTC::VectorBase v3i = v3f; for(int i = 0; i < 3; i++) { EXPECT_EQ(v3d(i), static_cast(v3f(i))); EXPECT_EQ(v3i(i), static_cast(v3f(i))); } } TEST(VectorBase, DotProduct) { int iv[5] = { -2, -1, 0, 1, 2 }; FasTC::VectorBase v5i(iv); unsigned uv[5] = { 1, 2, 3, 4, 5 }; FasTC::VectorBase v5u(uv); EXPECT_EQ(v5i.Dot(v5u), 10); EXPECT_EQ(v5u.Dot(v5i), 10); } TEST(VectorBase, Length) { int iv[5] = { 1, 2, 3, 4, 5 }; FasTC::VectorBase v5i (iv); EXPECT_EQ(v5i.LengthSq(), 55); EXPECT_EQ(v5i.Length(), 7); float fv[6] = {1, 2, 3, 4, 5, 6}; FasTC::VectorBase v6f (fv); EXPECT_EQ(v6f.LengthSq(), 91); EXPECT_NEAR(v6f.Length(), sqrt(91.0f), kEpsilon); } TEST(VectorBase, Normalization) { float fv[2] = {1, 0}; FasTC::VectorBase v2f (fv); v2f.Normalize(); EXPECT_EQ(v2f[0], 1); EXPECT_EQ(v2f[1], 0); // Normalized vector should be sqrt(2) for each axis, although // this can't be represented as integers... unsigned uv[2] = {2, 2}; FasTC::VectorBase v2u (uv); v2u.Normalize(); EXPECT_EQ(v2u[0], 1); EXPECT_EQ(v2u[1], 1); const float sqrt2 = sqrt(2)/2.0f; for(int i = 2; i < 10; i++) { v2f[0] = static_cast(i); v2f[1] = static_cast(i); v2f.Normalize(); EXPECT_NEAR(v2f[0], sqrt2, kEpsilon); EXPECT_NEAR(v2f[1], sqrt2, kEpsilon); } } TEST(VectorBase, Scaling) { float fv[2] = {1.0f, 3.0f}; FasTC::VectorBase v2f (fv); FasTC::VectorBase v2fd = v2f * 3.0f; EXPECT_NEAR(v2fd[0], 3.0f, kEpsilon); EXPECT_NEAR(v2fd[1], 9.0f, kEpsilon); v2fd = -1.0 * v2f; EXPECT_NEAR(v2fd[0], -1.0f, kEpsilon); EXPECT_NEAR(v2fd[1], -3.0f, kEpsilon); v2fd = v2f / 3; EXPECT_NEAR(v2fd[0], 1.0f / 3.0f, kEpsilon); EXPECT_NEAR(v2fd[1], 1.0f, kEpsilon); } TEST(VectorBase, Addition) { float fv[2] = {1.1f, 3.2f}; FasTC::VectorBase v2f (fv); unsigned uv[2] = {5, 2}; FasTC::VectorBase v2u (uv); FasTC::VectorBase au = v2u + v2f; EXPECT_EQ(au[0], 6); EXPECT_EQ(au[1], 5); FasTC::VectorBase af = v2f + v2u; EXPECT_NEAR(af[0], 6.1f, kEpsilon); EXPECT_NEAR(af[1], 5.2f, kEpsilon); au = v2u - v2f; EXPECT_EQ(au[0], 3); EXPECT_EQ(au[1], 0); af = v2f - v2u; EXPECT_NEAR(af[0], -3.9f, kEpsilon); EXPECT_NEAR(af[1], 1.2f, kEpsilon); } //////////////////////////////////////////////////////////////////////////////// // // Vec2 // //////////////////////////////////////////////////////////////////////////////// #include "Vector2.h" TEST(Vector2, BaseFunctionality) { FasTC::Vec2f v2f; FasTC::Vec2d v2d; v2f = v2d; EXPECT_NEAR(v2f[0], v2d[0], kEpsilon); EXPECT_NEAR(v2f[1], v2d[1], kEpsilon); } TEST(Vector2, Accessors) { float fv[2] = { 1.0f, 2.0f }; FasTC::Vec2f v2f (fv); EXPECT_EQ(v2f.X(), 1.0f); EXPECT_EQ(v2f.Y(), 2.0f); v2f.X() = 4.0f; v2f.Y() = 5.0f; EXPECT_EQ(v2f.X(), 4.0f); EXPECT_EQ(v2f.Y(), 5.0f); } TEST(Vector2, Addition) { float fv[2] = { 1.0f, 2.0f }; FasTC::Vec2f v2f (fv); double dv[2] = { 4.3, -10.2 }; FasTC::Vec2d v2d (dv); EXPECT_NEAR((v2f + v2d).X(), 5.3, kEpsilon); EXPECT_NEAR((v2f + v2d).Y(), -8.2, kEpsilon); } TEST(Vector2, Swizzle) { float fv[2] = {1.0f, 2.0f}; FasTC::Vec2f v; v = fv; EXPECT_EQ(v.XX().X(), 1.0f); EXPECT_EQ(v.XX().Y(), 1.0f); EXPECT_EQ(v.YY().X(), 2.0f); EXPECT_EQ(v.YY().Y(), 2.0f); EXPECT_EQ(v.YX().X(), 2.0f); EXPECT_EQ(v.YX().Y(), 1.0f); EXPECT_EQ(v.XY().X(), 1.0f); EXPECT_EQ(v.XY().Y(), 2.0f); } //////////////////////////////////////////////////////////////////////////////// // // Vec3 // //////////////////////////////////////////////////////////////////////////////// #include "Vector3.h" TEST(Vector3, BaseFunctionality) { FasTC::Vec3f vf; FasTC::Vec3d vd; vf = vd; for(int i = 0; i < 3; i++) { EXPECT_NEAR(vf[i], vd[i], kEpsilon); } } TEST(Vector3, Accessors) { float fv[3] = { 1.0f, 2.0f, 3.0f }; FasTC::Vec3f v3f (fv); EXPECT_EQ(v3f.X(), 1.0f); EXPECT_EQ(v3f.Y(), 2.0f); EXPECT_EQ(v3f.Z(), 3.0f); v3f.X() = 4.0f; v3f.Y() = 5.0f; v3f.Z() = 6.0f; EXPECT_EQ(v3f.X(), 4.0f); EXPECT_EQ(v3f.Y(), 5.0f); EXPECT_EQ(v3f.Z(), 6.0f); } TEST(Vector3, Addition) { float fv[3] = { 1.0f, 2.0f, 3.0f }; FasTC::Vec3f v3f (fv); double dv[3] = { 4.3, -10.2, 0.0f }; FasTC::Vec3d v3d (dv); EXPECT_NEAR((v3f + v3d).X(), 5.3, kEpsilon); EXPECT_NEAR((v3f + v3d).Y(), -8.2, kEpsilon); EXPECT_NEAR((v3f + v3d).Z(), 3.0, kEpsilon); } TEST(Vector3, Swizzle) { float fv[3] = {1.0f, 2.0f, 3.0f}; FasTC::Vec3f v; v = fv; EXPECT_EQ(v.XXX().Y(), 1.0f); EXPECT_EQ(v.YZX().X(), 2.0f); EXPECT_EQ(v.ZZY().Z(), 2.0f); EXPECT_EQ(v.ZYZ().X(), 3.0f); } TEST(Vector3, CrossProduct) { float fv[3] = {1.0f, 2.0f, 3.0f}; FasTC::Vec3f v1 (fv); FasTC::Vec3f v2 = v1; std::swap(v1.X(), v1.Z()); // Right handed coordinate system... FasTC::Vec3f r = v1.Cross(v2); EXPECT_NEAR(r.X(), 4.0f, kEpsilon); EXPECT_NEAR(r.Y(), -8.0f, kEpsilon); EXPECT_NEAR(r.Z(), 4.0f, kEpsilon); v1.X() = v1.Y() = v2.X() = v2.Z() = 0.0f; v1.Z() = v2.Y() = 1.0f; r = v1.Cross(v2); EXPECT_EQ(r.X(), -1.0f); EXPECT_EQ(r.Y(), 0.0f); EXPECT_EQ(r.Z(), 0.0f); r = v2.Cross(v1); EXPECT_EQ(r.X(), 1.0f); EXPECT_EQ(r.Y(), 0.0f); EXPECT_EQ(r.Z(), 0.0f); } //////////////////////////////////////////////////////////////////////////////// // // Vec4 // //////////////////////////////////////////////////////////////////////////////// #include "Vector4.h" TEST(Vector4, BaseFunctionality) { FasTC::Vec4f vf; FasTC::Vec4d vd; vf = vd; for(int i = 0; i < 4; i++) { EXPECT_NEAR(vf[i], vd[i], kEpsilon); } } TEST(Vector4, Accessors) { float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f }; FasTC::Vec4f v4f (fv); EXPECT_EQ(v4f.X(), 1.0f); EXPECT_EQ(v4f.Y(), 2.0f); EXPECT_EQ(v4f.Z(), 3.0f); EXPECT_EQ(v4f.W(), 4.0f); v4f.X() = 5.0f; v4f.Y() = 6.0f; v4f.Z() = 7.0f; v4f.W() = 8.0f; EXPECT_EQ(v4f.X(), 5.0f); EXPECT_EQ(v4f.Y(), 6.0f); EXPECT_EQ(v4f.Z(), 7.0f); EXPECT_EQ(v4f.W(), 8.0f); } TEST(Vector4, Addition) { float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f }; FasTC::Vec4f v4f (fv); double dv[4] = { 4.3, -10.2, 0.0f, -22.0f }; FasTC::Vec4d v3d (dv); EXPECT_NEAR((v4f + v3d).X(), 5.3, kEpsilon); EXPECT_NEAR((v4f + v3d).Y(), -8.2, kEpsilon); EXPECT_NEAR((v4f + v3d).Z(), 3.0, kEpsilon); EXPECT_NEAR((v4f + v3d).W(), -18.0, kEpsilon); } TEST(Vector4, Swizzle) { float fv[4] = {1.0f, 2.0f, 3.0f, 4.0f}; FasTC::Vec4f v; v = fv; EXPECT_EQ(v.XXXX().Y(), 1.0f); EXPECT_EQ(v.YZXW().X(), 2.0f); EXPECT_EQ(v.ZWY().Z(), 2.0f); EXPECT_EQ(v.ZZ().X(), 3.0f); EXPECT_EQ(v.WWXY().W(), 2.0f); }