FasTC/BPTCEncoder/src/RGBAEndpoints.cpp
2015-02-11 21:26:31 -08:00

476 lines
14 KiB
C++
Executable file

/* FasTC
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for educational, research, and non-profit purposes, without
* fee, and without a written agreement is hereby granted, provided that the
* above copyright notice, this paragraph, and the following four paragraphs
* appear in all copies.
*
* Permission to incorporate this software into commercial products may be
* obtained by contacting the authors or the Office of Technology Development
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
*
* This software program and documentation are copyrighted by the University of
* North Carolina at Chapel Hill. The software program and documentation are
* supplied "as is," without any accompanying services from the University of
* North Carolina at Chapel Hill or the authors. The University of North
* Carolina at Chapel Hill and the authors do not warrant that the operation of
* the program will be uninterrupted or error-free. The end-user understands
* that the program was developed for research purposes and is advised not to
* rely exclusively on the program for any reason.
*
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
* ENHANCEMENTS, OR MODIFICATIONS.
*
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
*
* The authors may be contacted via:
*
* Pavel Krajcevski
* Dept of Computer Science
* 201 S Columbia St
* Frederick P. Brooks, Jr. Computer Science Bldg
* Chapel Hill, NC 27599-3175
* USA
*
* <http://gamma.cs.unc.edu/FasTC/>
*/
// The original lisence from the code available at the following location:
// http://software.intel.com/en-us/vcsource/samples/fast-texture-compression
//
// This code has been modified significantly from the original.
//------------------------------------------------------------------------------
// Copyright 2011 Intel Corporation
// All Rights Reserved
//
// Permission is granted to use, copy, distribute and prepare derivative works
// of this software for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies. Intel makes no
// representations about the suitability of this software for any purpose. THIS
// SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES,
// EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER
// INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR
// INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume
// any responsibility for any errors which may appear in this software nor any
// responsibility to update it.
//
//------------------------------------------------------------------------------
#include "FasTC/BPTCConfig.h"
#include "FasTC/BPTCCompressor.h"
#include "RGBAEndpoints.h"
#include "CompressionMode.h"
#include <cassert>
#include <cfloat>
#include <cmath>
#include <cstdlib>
#include <cstdio>
#ifndef min
template <typename T>
static T min(const T &a, const T &b) {
return (a > b)? b : a;
}
#endif
#ifndef max
template <typename T>
static T max(const T &a, const T &b) {
return (a > b)? a : b;
}
#endif
///////////////////////////////////////////////////////////////////////////////
//
// Static helper functions
//
///////////////////////////////////////////////////////////////////////////////
static inline uint32 CountBitsInMask(uint8 n) {
#if defined(_WIN64) || defined(__x86_64__) || defined(NO_INLINE_ASSEMBLY)
if(!n) return 0; // no bits set
if(!(n & (n-1))) return 1; // power of two
uint32 c;
for(c = 0; n; c++) {
n &= n - 1;
}
return c;
#else
#ifdef _MSC_VER
__asm {
mov eax, 8
movzx ecx, n
bsf ecx, ecx
sub eax, ecx
}
#else
uint32 ans;
__asm__("movl $8, %%eax;"
"movzbl %b1, %%ecx;"
"bsf %%ecx, %%ecx;"
"subl %%ecx, %%eax;"
"movl %%eax, %0;"
: "=Q"(ans)
: "b"(n)
: "%eax", "%ecx"
);
return ans;
#endif
#endif
}
template <typename ty>
static inline void clamp(ty &x, const ty &min, const ty &max) {
x = (x < min)? min : ((x > max)? max : x);
}
// absolute distance. It turns out the compiler does a much
// better job of optimizing this than we can, since we can't
// translate the values to/from registers
template <typename ty>
static ty sad(ty a, ty b) {
return (a > b)? a - b : b - a;
}
///////////////////////////////////////////////////////////////////////////////
//
// RGBAVector implementation
//
///////////////////////////////////////////////////////////////////////////////
uint8 QuantizeChannel(const uint8 val, const uint8 mask, const int pBit) {
// If the mask is all the bits, then we can just return the value.
if(mask == 0xFF) {
return val;
}
// Otherwise if the mask is no bits then we'll assume that they want
// all the bits ... this is only really relevant for alpha...
if(mask == 0x0) {
return 0xFF;
}
uint32 prec = CountBitsInMask(mask);
const uint32 step = 1 << (8 - prec);
assert(step-1 == uint8(~mask));
uint32 lval = val & mask;
uint32 hval = lval + step;
if(pBit >= 0) {
prec++;
lval |= !!(pBit) << (8 - prec);
hval |= !!(pBit) << (8 - prec);
}
if(lval > val) {
lval -= step;
hval -= step;
}
lval |= lval >> prec;
hval |= hval >> prec;
if(sad<uint8>(val, lval) < sad<uint8>(val, hval))
return lval;
else
return hval;
}
uint32 RGBAVector::ToPixel(const uint32 channelMask, const int pBit) const {
const uint8 pRet0 = QuantizeChannel(uint32(R() + 0.5) & 0xFF, channelMask & 0xFF, pBit);
const uint8 pRet1 = QuantizeChannel(uint32(G() + 0.5) & 0xFF, (channelMask >> 8) & 0xFF, pBit);
const uint8 pRet2 = QuantizeChannel(uint32(B() + 0.5) & 0xFF, (channelMask >> 16) & 0xFF, pBit);
const uint8 pRet3 = QuantizeChannel(uint32(A() + 0.5) & 0xFF, (channelMask >> 24) & 0xFF, pBit);
const uint32 ret = pRet0 | (pRet1 << 8) | (pRet2 << 16) | (pRet3 << 24);
return ret;
}
///////////////////////////////////////////////////////////////////////////////
//
// Cluster implementation
//
///////////////////////////////////////////////////////////////////////////////
template<typename T>
static inline T Clamp(const T &x, const T &a, const T &b) {
return std::max(a, std::min(x, b));
}
template<const uint8 nBuckets>
double RGBACluster::QuantizedError(
const RGBAVector &p1, const RGBAVector &p2,
uint32 bitMask, const RGBAVector &errorMetricVec,
const int pbits[2], uint8 *indices
) const {
// nBuckets should be a power of two.
const uint8 indexPrec = static_cast<uint8>(log(static_cast<float>(nBuckets))/log(2.0f));
assert(!(nBuckets & (nBuckets - 1)));
assert(indexPrec >= 2 && indexPrec <= 4);
typedef uint32 tInterpPair[2];
typedef tInterpPair tInterpLevel[16];
const tInterpLevel *interpVals = BPTCC::kInterpolationValues + (indexPrec - 1);
uint32 qp1, qp2;
if(pbits) {
qp1 = p1.ToPixel(bitMask, pbits[0]);
qp2 = p2.ToPixel(bitMask, pbits[1]);
} else {
qp1 = p1.ToPixel(bitMask);
qp2 = p2.ToPixel(bitMask);
}
const RGBAVector uqp1 = RGBAVector(0, qp1);
const RGBAVector uqp2 = RGBAVector(0, qp2);
const float uqplsq = (uqp1 - uqp2).LengthSq();
const RGBAVector uqpdir = uqp2 - uqp1;
const uint8 *pqp1 = reinterpret_cast<const uint8 *>(&qp1);
const uint8 *pqp2 = reinterpret_cast<const uint8 *>(&qp2);
const RGBAVector metric = errorMetricVec;
float totalError = 0.0;
if(uqplsq == 0) {
// If both endpoints are the same then the indices don't matter...
for(uint32 i = 0; i < GetNumPoints(); i++) {
const uint32 pixel = GetPixel(i);
const uint8 *pb = (const uint8 *)(&pixel);
uint32 interp0 = (*interpVals)[0][0];
uint32 interp1 = (*interpVals)[0][1];
RGBAVector errorVec (0.0f);
for(uint32 k = 0; k < 4; k++) {
const uint32 ip = (((pqp1[k] * interp0) + (pqp2[k] * interp1) + 32) >> 6) & 0xFF;
const uint8 dist = sad<uint8>(pb[k], ip);
errorVec[k] = static_cast<float>(dist) * metric[k];
}
totalError += errorVec * errorVec;
if(indices)
indices[i] = 0;
}
return totalError;
}
for(uint32 i = 0; i < GetNumPoints(); i++) {
// Project this point unto the direction denoted by uqpdir...
const RGBAVector pt = GetPoint(i);
#if 0
const float pct = Clamp(((pt - uqp1) * uqpdir) / uqplsq, 0.0f, 1.0f);
const int32 j1 = static_cast<int32>(pct * static_cast<float>(nBuckets-1));
const int32 j2 = static_cast<int32>(pct * static_cast<float>(nBuckets-1) + 0.7);
#else
const float pct = ((pt - uqp1) * uqpdir) / uqplsq;
int32 j1 = static_cast<int32>(floor(pct * static_cast<float>(nBuckets-1)));
int32 j2 = static_cast<int32>(ceil(pct * static_cast<float>(nBuckets-1)));
j1 = std::min(std::max(0, j1), nBuckets - 1);
j2 = std::min(j2, nBuckets - 1);
#endif
assert(j1 >= 0 && j2 <= nBuckets - 1);
const uint32 pixel = GetPixel(i);
const uint8 *pb = (const uint8 *)(&pixel);
float minError = FLT_MAX;
uint8 bestBucket = 0;
int32 j = j1;
do {
uint32 interp0 = (*interpVals)[j][0];
uint32 interp1 = (*interpVals)[j][1];
RGBAVector errorVec (0.0f);
for(uint32 k = 0; k < 4; k++) {
const uint32 ip = (((pqp1[k] * interp0) + (pqp2[k] * interp1) + 32) >> 6) & 0xFF;
const uint8 dist = sad<uint8>(pb[k], ip);
errorVec[k] = static_cast<float>(dist) * metric[k];
}
float error = errorVec * errorVec;
if(error < minError) {
minError = error;
bestBucket = j;
}
// Conceptually, once the error starts growing, it doesn't stop growing (we're moving
// farther away from the reference point along the line). Hence we can early out here.
// However, quanitzation artifacts mean that this is not ALWAYS the case, so we do suffer
// about 0.01 RMS error.
else if(error > minError) {
break;
}
} while(++j <= j2);
totalError += minError;
if(indices) indices[i] = bestBucket;
}
return totalError;
}
template double RGBACluster::QuantizedError<4>(
const RGBAVector &p1, const RGBAVector &p2,
uint32 bitMask, const RGBAVector &errorMetricVec,
const int pbits[2], uint8 *indices) const;
template double RGBACluster::QuantizedError<8>(
const RGBAVector &p1, const RGBAVector &p2,
uint32 bitMask, const RGBAVector &errorMetricVec,
const int pbits[2], uint8 *indices) const;
template double RGBACluster::QuantizedError<16>(
const RGBAVector &p1, const RGBAVector &p2,
uint32 bitMask, const RGBAVector &errorMetricVec,
const int pbits[2], uint8 *indices) const;
uint32 RGBACluster::GetPrincipalAxis(RGBADir &axis, float *eigOne, float *eigTwo) const {
// We use these vectors for calculating the covariance matrix...
RGBAVector toPts[kMaxNumDataPoints];
RGBAVector toPtsMax(-std::numeric_limits<float>::max());
for(uint32 i = 0; i < this->GetNumPoints(); i++) {
toPts[i] = this->GetPoint(i) - this->GetAvg();
for(uint32 j = 0; j < kNumColorChannels; j++) {
toPtsMax[j] = max(toPtsMax[j], toPts[i][j]);
}
}
// Generate a list of unique points...
RGBAVector upts[kMaxNumDataPoints];
uint32 uptsIdx = 0;
for(uint32 i = 0; i < this->GetNumPoints(); i++) {
bool hasPt = false;
for(uint32 j = 0; j < uptsIdx; j++) {
if(upts[j] == this->GetPoint(i))
hasPt = true;
}
if(!hasPt) {
upts[uptsIdx++] = this->GetPoint(i);
}
}
assert(uptsIdx > 0);
if(uptsIdx == 1) {
axis.R() = axis.G() = axis.B() = axis.A() = 0.0f;
return 0;
// Collinear?
} else {
RGBADir dir (upts[1] - upts[0]);
bool collinear = true;
for(uint32 i = 2; i < this->GetNumPoints(); i++) {
RGBAVector v = (upts[i] - upts[0]);
if(fabs(fabs(v*dir) - v.Length()) > 1e-7) {
collinear = false;
break;
}
}
if(collinear) {
axis = dir;
return 0;
}
}
RGBAMatrix covMatrix;
// Compute covariance.
for(uint32 i = 0; i < kNumColorChannels; i++) {
for(uint32 j = 0; j <= i; j++) {
float sum = 0.0;
for(uint32 k = 0; k < this->GetNumPoints(); k++) {
sum += toPts[k][i] * toPts[k][j];
}
covMatrix(i, j) = sum / static_cast<float>(kNumColorChannels - 1);
covMatrix(j, i) = covMatrix(i, j);
}
}
uint32 iters = covMatrix.PowerMethod(axis, eigOne);
if(NULL != eigTwo && NULL != eigOne) {
if(*eigOne != 0.0) {
RGBAMatrix reduced;
for(uint32 j = 0; j < 4; j++) {
for(uint32 i = 0; i < 4; i++) {
reduced(i, j) = axis[j] * axis[i];
}
}
reduced = covMatrix - ((*eigOne) * reduced);
bool allZero = true;
for(uint32 i = 0; i < 16; i++) {
if(fabs(reduced[i]) > 0.0005) {
allZero = false;
}
}
if(allZero) {
*eigTwo = 0.0;
}
else {
RGBADir dummyDir;
iters += reduced.PowerMethod(dummyDir, eigTwo);
}
}
else {
*eigTwo = 0.0;
}
}
return iters;
}
///////////////////////////////////////////////////////////////////////////////
//
// Utility function implementation
//
///////////////////////////////////////////////////////////////////////////////
void ClampEndpoints(RGBAVector &p1, RGBAVector &p2) {
for(uint32 i = 0; i < 4; i++) {
clamp(p1[i], 0.0f, 255.0f);
clamp(p2[i], 0.0f, 255.0f);
}
}