mirror of
https://github.com/yuzu-emu/FasTC
synced 2024-11-26 10:57:58 +00:00
476 lines
14 KiB
C++
Executable file
476 lines
14 KiB
C++
Executable file
/* FasTC
|
|
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for educational, research, and non-profit purposes, without
|
|
* fee, and without a written agreement is hereby granted, provided that the
|
|
* above copyright notice, this paragraph, and the following four paragraphs
|
|
* appear in all copies.
|
|
*
|
|
* Permission to incorporate this software into commercial products may be
|
|
* obtained by contacting the authors or the Office of Technology Development
|
|
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
|
|
*
|
|
* This software program and documentation are copyrighted by the University of
|
|
* North Carolina at Chapel Hill. The software program and documentation are
|
|
* supplied "as is," without any accompanying services from the University of
|
|
* North Carolina at Chapel Hill or the authors. The University of North
|
|
* Carolina at Chapel Hill and the authors do not warrant that the operation of
|
|
* the program will be uninterrupted or error-free. The end-user understands
|
|
* that the program was developed for research purposes and is advised not to
|
|
* rely exclusively on the program for any reason.
|
|
*
|
|
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
|
|
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
|
|
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
|
|
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
|
|
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
|
|
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
|
|
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
|
|
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
|
|
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
|
|
* ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
*
|
|
* The authors may be contacted via:
|
|
*
|
|
* Pavel Krajcevski
|
|
* Dept of Computer Science
|
|
* 201 S Columbia St
|
|
* Frederick P. Brooks, Jr. Computer Science Bldg
|
|
* Chapel Hill, NC 27599-3175
|
|
* USA
|
|
*
|
|
* <http://gamma.cs.unc.edu/FasTC/>
|
|
*/
|
|
|
|
// The original lisence from the code available at the following location:
|
|
// http://software.intel.com/en-us/vcsource/samples/fast-texture-compression
|
|
//
|
|
// This code has been modified significantly from the original.
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Copyright 2011 Intel Corporation
|
|
// All Rights Reserved
|
|
//
|
|
// Permission is granted to use, copy, distribute and prepare derivative works
|
|
// of this software for any purpose and without fee, provided, that the above
|
|
// copyright notice and this statement appear in all copies. Intel makes no
|
|
// representations about the suitability of this software for any purpose. THIS
|
|
// SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES,
|
|
// EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER
|
|
// INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR
|
|
// INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume
|
|
// any responsibility for any errors which may appear in this software nor any
|
|
// responsibility to update it.
|
|
//
|
|
//------------------------------------------------------------------------------
|
|
|
|
#include "FasTC/BPTCConfig.h"
|
|
#include "FasTC/BPTCCompressor.h"
|
|
|
|
#include "RGBAEndpoints.h"
|
|
#include "CompressionMode.h"
|
|
|
|
#include <cassert>
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstdio>
|
|
|
|
#ifndef min
|
|
template <typename T>
|
|
static T min(const T &a, const T &b) {
|
|
return (a > b)? b : a;
|
|
}
|
|
#endif
|
|
|
|
#ifndef max
|
|
template <typename T>
|
|
static T max(const T &a, const T &b) {
|
|
return (a > b)? a : b;
|
|
}
|
|
#endif
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Static helper functions
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
static inline uint32 CountBitsInMask(uint8 n) {
|
|
|
|
#if defined(_WIN64) || defined(__x86_64__) || defined(NO_INLINE_ASSEMBLY)
|
|
if(!n) return 0; // no bits set
|
|
if(!(n & (n-1))) return 1; // power of two
|
|
|
|
uint32 c;
|
|
for(c = 0; n; c++) {
|
|
n &= n - 1;
|
|
}
|
|
return c;
|
|
#else
|
|
#ifdef _MSC_VER
|
|
__asm {
|
|
mov eax, 8
|
|
movzx ecx, n
|
|
bsf ecx, ecx
|
|
sub eax, ecx
|
|
}
|
|
#else
|
|
uint32 ans;
|
|
__asm__("movl $8, %%eax;"
|
|
"movzbl %b1, %%ecx;"
|
|
"bsf %%ecx, %%ecx;"
|
|
"subl %%ecx, %%eax;"
|
|
"movl %%eax, %0;"
|
|
: "=Q"(ans)
|
|
: "b"(n)
|
|
: "%eax", "%ecx"
|
|
);
|
|
return ans;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
template <typename ty>
|
|
static inline void clamp(ty &x, const ty &min, const ty &max) {
|
|
x = (x < min)? min : ((x > max)? max : x);
|
|
}
|
|
|
|
// absolute distance. It turns out the compiler does a much
|
|
// better job of optimizing this than we can, since we can't
|
|
// translate the values to/from registers
|
|
template <typename ty>
|
|
static ty sad(ty a, ty b) {
|
|
return (a > b)? a - b : b - a;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// RGBAVector implementation
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
uint8 QuantizeChannel(const uint8 val, const uint8 mask, const int pBit) {
|
|
|
|
// If the mask is all the bits, then we can just return the value.
|
|
if(mask == 0xFF) {
|
|
return val;
|
|
}
|
|
|
|
// Otherwise if the mask is no bits then we'll assume that they want
|
|
// all the bits ... this is only really relevant for alpha...
|
|
if(mask == 0x0) {
|
|
return 0xFF;
|
|
}
|
|
|
|
uint32 prec = CountBitsInMask(mask);
|
|
const uint32 step = 1 << (8 - prec);
|
|
|
|
assert(step-1 == uint8(~mask));
|
|
|
|
uint32 lval = val & mask;
|
|
uint32 hval = lval + step;
|
|
|
|
if(pBit >= 0) {
|
|
prec++;
|
|
lval |= !!(pBit) << (8 - prec);
|
|
hval |= !!(pBit) << (8 - prec);
|
|
}
|
|
|
|
if(lval > val) {
|
|
lval -= step;
|
|
hval -= step;
|
|
}
|
|
|
|
lval |= lval >> prec;
|
|
hval |= hval >> prec;
|
|
|
|
if(sad<uint8>(val, lval) < sad<uint8>(val, hval))
|
|
return lval;
|
|
else
|
|
return hval;
|
|
}
|
|
|
|
uint32 RGBAVector::ToPixel(const uint32 channelMask, const int pBit) const {
|
|
|
|
const uint8 pRet0 = QuantizeChannel(uint32(R() + 0.5) & 0xFF, channelMask & 0xFF, pBit);
|
|
const uint8 pRet1 = QuantizeChannel(uint32(G() + 0.5) & 0xFF, (channelMask >> 8) & 0xFF, pBit);
|
|
const uint8 pRet2 = QuantizeChannel(uint32(B() + 0.5) & 0xFF, (channelMask >> 16) & 0xFF, pBit);
|
|
const uint8 pRet3 = QuantizeChannel(uint32(A() + 0.5) & 0xFF, (channelMask >> 24) & 0xFF, pBit);
|
|
|
|
const uint32 ret = pRet0 | (pRet1 << 8) | (pRet2 << 16) | (pRet3 << 24);
|
|
|
|
return ret;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Cluster implementation
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
static inline T Clamp(const T &x, const T &a, const T &b) {
|
|
return std::max(a, std::min(x, b));
|
|
}
|
|
|
|
template<const uint8 nBuckets>
|
|
double RGBACluster::QuantizedError(
|
|
const RGBAVector &p1, const RGBAVector &p2,
|
|
uint32 bitMask, const RGBAVector &errorMetricVec,
|
|
const int pbits[2], uint8 *indices
|
|
) const {
|
|
|
|
// nBuckets should be a power of two.
|
|
const uint8 indexPrec = static_cast<uint8>(log(static_cast<float>(nBuckets))/log(2.0f));
|
|
assert(!(nBuckets & (nBuckets - 1)));
|
|
assert(indexPrec >= 2 && indexPrec <= 4);
|
|
|
|
typedef uint32 tInterpPair[2];
|
|
typedef tInterpPair tInterpLevel[16];
|
|
const tInterpLevel *interpVals = BPTCC::kInterpolationValues + (indexPrec - 1);
|
|
|
|
uint32 qp1, qp2;
|
|
if(pbits) {
|
|
qp1 = p1.ToPixel(bitMask, pbits[0]);
|
|
qp2 = p2.ToPixel(bitMask, pbits[1]);
|
|
} else {
|
|
qp1 = p1.ToPixel(bitMask);
|
|
qp2 = p2.ToPixel(bitMask);
|
|
}
|
|
|
|
const RGBAVector uqp1 = RGBAVector(0, qp1);
|
|
const RGBAVector uqp2 = RGBAVector(0, qp2);
|
|
const float uqplsq = (uqp1 - uqp2).LengthSq();
|
|
const RGBAVector uqpdir = uqp2 - uqp1;
|
|
|
|
const uint8 *pqp1 = reinterpret_cast<const uint8 *>(&qp1);
|
|
const uint8 *pqp2 = reinterpret_cast<const uint8 *>(&qp2);
|
|
|
|
const RGBAVector metric = errorMetricVec;
|
|
|
|
float totalError = 0.0;
|
|
if(uqplsq == 0) {
|
|
|
|
// If both endpoints are the same then the indices don't matter...
|
|
for(uint32 i = 0; i < GetNumPoints(); i++) {
|
|
|
|
const uint32 pixel = GetPixel(i);
|
|
const uint8 *pb = (const uint8 *)(&pixel);
|
|
|
|
uint32 interp0 = (*interpVals)[0][0];
|
|
uint32 interp1 = (*interpVals)[0][1];
|
|
|
|
RGBAVector errorVec (0.0f);
|
|
for(uint32 k = 0; k < 4; k++) {
|
|
const uint32 ip = (((pqp1[k] * interp0) + (pqp2[k] * interp1) + 32) >> 6) & 0xFF;
|
|
const uint8 dist = sad<uint8>(pb[k], ip);
|
|
errorVec[k] = static_cast<float>(dist) * metric[k];
|
|
}
|
|
|
|
totalError += errorVec * errorVec;
|
|
|
|
if(indices)
|
|
indices[i] = 0;
|
|
}
|
|
|
|
return totalError;
|
|
}
|
|
|
|
for(uint32 i = 0; i < GetNumPoints(); i++) {
|
|
|
|
// Project this point unto the direction denoted by uqpdir...
|
|
const RGBAVector pt = GetPoint(i);
|
|
#if 0
|
|
const float pct = Clamp(((pt - uqp1) * uqpdir) / uqplsq, 0.0f, 1.0f);
|
|
const int32 j1 = static_cast<int32>(pct * static_cast<float>(nBuckets-1));
|
|
const int32 j2 = static_cast<int32>(pct * static_cast<float>(nBuckets-1) + 0.7);
|
|
#else
|
|
const float pct = ((pt - uqp1) * uqpdir) / uqplsq;
|
|
int32 j1 = static_cast<int32>(floor(pct * static_cast<float>(nBuckets-1)));
|
|
int32 j2 = static_cast<int32>(ceil(pct * static_cast<float>(nBuckets-1)));
|
|
j1 = std::min(std::max(0, j1), nBuckets - 1);
|
|
j2 = std::min(j2, nBuckets - 1);
|
|
#endif
|
|
|
|
assert(j1 >= 0 && j2 <= nBuckets - 1);
|
|
|
|
const uint32 pixel = GetPixel(i);
|
|
const uint8 *pb = (const uint8 *)(&pixel);
|
|
|
|
float minError = FLT_MAX;
|
|
uint8 bestBucket = 0;
|
|
int32 j = j1;
|
|
do {
|
|
|
|
uint32 interp0 = (*interpVals)[j][0];
|
|
uint32 interp1 = (*interpVals)[j][1];
|
|
|
|
RGBAVector errorVec (0.0f);
|
|
for(uint32 k = 0; k < 4; k++) {
|
|
const uint32 ip = (((pqp1[k] * interp0) + (pqp2[k] * interp1) + 32) >> 6) & 0xFF;
|
|
const uint8 dist = sad<uint8>(pb[k], ip);
|
|
errorVec[k] = static_cast<float>(dist) * metric[k];
|
|
}
|
|
|
|
float error = errorVec * errorVec;
|
|
if(error < minError) {
|
|
minError = error;
|
|
bestBucket = j;
|
|
}
|
|
|
|
// Conceptually, once the error starts growing, it doesn't stop growing (we're moving
|
|
// farther away from the reference point along the line). Hence we can early out here.
|
|
// However, quanitzation artifacts mean that this is not ALWAYS the case, so we do suffer
|
|
// about 0.01 RMS error.
|
|
else if(error > minError) {
|
|
break;
|
|
}
|
|
} while(++j <= j2);
|
|
|
|
totalError += minError;
|
|
|
|
if(indices) indices[i] = bestBucket;
|
|
}
|
|
|
|
return totalError;
|
|
}
|
|
|
|
template double RGBACluster::QuantizedError<4>(
|
|
const RGBAVector &p1, const RGBAVector &p2,
|
|
uint32 bitMask, const RGBAVector &errorMetricVec,
|
|
const int pbits[2], uint8 *indices) const;
|
|
|
|
template double RGBACluster::QuantizedError<8>(
|
|
const RGBAVector &p1, const RGBAVector &p2,
|
|
uint32 bitMask, const RGBAVector &errorMetricVec,
|
|
const int pbits[2], uint8 *indices) const;
|
|
|
|
template double RGBACluster::QuantizedError<16>(
|
|
const RGBAVector &p1, const RGBAVector &p2,
|
|
uint32 bitMask, const RGBAVector &errorMetricVec,
|
|
const int pbits[2], uint8 *indices) const;
|
|
|
|
uint32 RGBACluster::GetPrincipalAxis(RGBADir &axis, float *eigOne, float *eigTwo) const {
|
|
|
|
// We use these vectors for calculating the covariance matrix...
|
|
RGBAVector toPts[kMaxNumDataPoints];
|
|
RGBAVector toPtsMax(-std::numeric_limits<float>::max());
|
|
for(uint32 i = 0; i < this->GetNumPoints(); i++) {
|
|
toPts[i] = this->GetPoint(i) - this->GetAvg();
|
|
|
|
for(uint32 j = 0; j < kNumColorChannels; j++) {
|
|
toPtsMax[j] = max(toPtsMax[j], toPts[i][j]);
|
|
}
|
|
}
|
|
|
|
// Generate a list of unique points...
|
|
RGBAVector upts[kMaxNumDataPoints];
|
|
uint32 uptsIdx = 0;
|
|
for(uint32 i = 0; i < this->GetNumPoints(); i++) {
|
|
|
|
bool hasPt = false;
|
|
for(uint32 j = 0; j < uptsIdx; j++) {
|
|
if(upts[j] == this->GetPoint(i))
|
|
hasPt = true;
|
|
}
|
|
|
|
if(!hasPt) {
|
|
upts[uptsIdx++] = this->GetPoint(i);
|
|
}
|
|
}
|
|
|
|
assert(uptsIdx > 0);
|
|
|
|
if(uptsIdx == 1) {
|
|
axis.R() = axis.G() = axis.B() = axis.A() = 0.0f;
|
|
return 0;
|
|
|
|
// Collinear?
|
|
} else {
|
|
RGBADir dir (upts[1] - upts[0]);
|
|
bool collinear = true;
|
|
for(uint32 i = 2; i < this->GetNumPoints(); i++) {
|
|
RGBAVector v = (upts[i] - upts[0]);
|
|
if(fabs(fabs(v*dir) - v.Length()) > 1e-7) {
|
|
collinear = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(collinear) {
|
|
axis = dir;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
RGBAMatrix covMatrix;
|
|
|
|
// Compute covariance.
|
|
for(uint32 i = 0; i < kNumColorChannels; i++) {
|
|
for(uint32 j = 0; j <= i; j++) {
|
|
|
|
float sum = 0.0;
|
|
for(uint32 k = 0; k < this->GetNumPoints(); k++) {
|
|
sum += toPts[k][i] * toPts[k][j];
|
|
}
|
|
|
|
covMatrix(i, j) = sum / static_cast<float>(kNumColorChannels - 1);
|
|
covMatrix(j, i) = covMatrix(i, j);
|
|
}
|
|
}
|
|
|
|
uint32 iters = covMatrix.PowerMethod(axis, eigOne);
|
|
if(NULL != eigTwo && NULL != eigOne) {
|
|
if(*eigOne != 0.0) {
|
|
RGBAMatrix reduced;
|
|
for(uint32 j = 0; j < 4; j++) {
|
|
for(uint32 i = 0; i < 4; i++) {
|
|
reduced(i, j) = axis[j] * axis[i];
|
|
}
|
|
}
|
|
|
|
reduced = covMatrix - ((*eigOne) * reduced);
|
|
bool allZero = true;
|
|
for(uint32 i = 0; i < 16; i++) {
|
|
if(fabs(reduced[i]) > 0.0005) {
|
|
allZero = false;
|
|
}
|
|
}
|
|
|
|
if(allZero) {
|
|
*eigTwo = 0.0;
|
|
}
|
|
else {
|
|
RGBADir dummyDir;
|
|
iters += reduced.PowerMethod(dummyDir, eigTwo);
|
|
}
|
|
}
|
|
else {
|
|
*eigTwo = 0.0;
|
|
}
|
|
}
|
|
|
|
return iters;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Utility function implementation
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
void ClampEndpoints(RGBAVector &p1, RGBAVector &p2) {
|
|
for(uint32 i = 0; i < 4; i++) {
|
|
clamp(p1[i], 0.0f, 255.0f);
|
|
clamp(p2[i], 0.0f, 255.0f);
|
|
}
|
|
}
|