mirror of
https://github.com/yuzu-emu/FasTC
synced 2024-11-22 22:53:39 +00:00
479ba8e76d
Most notably, we need to actually fix a bug in MSVC that doesn't know how to properly instantiate enums in partial template specialization. There are more details outlined here: http://stackoverflow.com/questions/15466594/why-does-msvc-fail-to-compile-this-template-function The fix in this commit closes #10 Also in this commit is a hacky way to allow GL defines. Apparently "LoadImage" is defined as a macro even with WIN32_LEAN_AND_MEAN. This means that we have to #undef the code that includes it, meaning that we also need to make sure not to actually mix GLDefines.h with any file that needs to use the functions from Windows.h
448 lines
11 KiB
C++
448 lines
11 KiB
C++
/* FasTC
|
|
* Copyright (c) 2014 University of North Carolina at Chapel Hill.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and its
|
|
* documentation for educational, research, and non-profit purposes, without
|
|
* fee, and without a written agreement is hereby granted, provided that the
|
|
* above copyright notice, this paragraph, and the following four paragraphs
|
|
* appear in all copies.
|
|
*
|
|
* Permission to incorporate this software into commercial products may be
|
|
* obtained by contacting the authors or the Office of Technology Development
|
|
* at the University of North Carolina at Chapel Hill <otd@unc.edu>.
|
|
*
|
|
* This software program and documentation are copyrighted by the University of
|
|
* North Carolina at Chapel Hill. The software program and documentation are
|
|
* supplied "as is," without any accompanying services from the University of
|
|
* North Carolina at Chapel Hill or the authors. The University of North
|
|
* Carolina at Chapel Hill and the authors do not warrant that the operation of
|
|
* the program will be uninterrupted or error-free. The end-user understands
|
|
* that the program was developed for research purposes and is advised not to
|
|
* rely exclusively on the program for any reason.
|
|
*
|
|
* IN NO EVENT SHALL THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL OR THE
|
|
* AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
|
|
* OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF
|
|
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF NORTH CAROLINA
|
|
* AT CHAPEL HILL OR THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND THE AUTHORS SPECIFICALLY
|
|
* DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ANY
|
|
* STATUTORY WARRANTY OF NON-INFRINGEMENT. THE SOFTWARE PROVIDED HEREUNDER IS ON
|
|
* AN "AS IS" BASIS, AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL AND
|
|
* THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
|
|
* ENHANCEMENTS, OR MODIFICATIONS.
|
|
*
|
|
* Please send all BUG REPORTS to <pavel@cs.unc.edu>.
|
|
*
|
|
* The authors may be contacted via:
|
|
*
|
|
* Pavel Krajcevski
|
|
* Dept of Computer Science
|
|
* 201 S Columbia St
|
|
* Frederick P. Brooks, Jr. Computer Science Bldg
|
|
* Chapel Hill, NC 27599-3175
|
|
* USA
|
|
*
|
|
* <http://gamma.cs.unc.edu/FasTC/>
|
|
*/
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "VectorBase.h"
|
|
|
|
static const float kEpsilon = 1e-6f;
|
|
|
|
TEST(VectorBase, Constructors) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
FasTC::VectorBase<double, 1> v1d;
|
|
FasTC::VectorBase<int, 7> v7i;
|
|
FasTC::VectorBase<unsigned, 16> v16u;
|
|
|
|
#define TEST_VECTOR_COPY_CONS(v, t, n) \
|
|
do { \
|
|
FasTC::VectorBase<t, n> d##v (v); \
|
|
for(int i = 0; i < n; i++) { \
|
|
EXPECT_EQ(d##v [i], v[i]); \
|
|
} \
|
|
} while(0) \
|
|
|
|
TEST_VECTOR_COPY_CONS(v3f, float, 3);
|
|
TEST_VECTOR_COPY_CONS(v1d, double, 1);
|
|
TEST_VECTOR_COPY_CONS(v7i, int, 7);
|
|
TEST_VECTOR_COPY_CONS(v16u, unsigned, 16);
|
|
|
|
#undef TEST_VECTOR_COPY_CONS
|
|
}
|
|
|
|
TEST(VectorBase, Accessors) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 1.0f;
|
|
v3f[1] = -2.3f;
|
|
v3f[2] = 1000;
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3f[i], v3f(i));
|
|
}
|
|
|
|
v3f(0) = -1.0f;
|
|
v3f(1) = 2.3f;
|
|
v3f(2) = -1000;
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3f(i), v3f[i]);
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, PointerConversion) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 1.0f;
|
|
v3f[1] = -2.3f;
|
|
v3f[2] = 1000;
|
|
|
|
float cmp[3] = { 1.0f, -2.3f, 1000 };
|
|
const float *v3fp = v3f;
|
|
int result = memcmp(cmp, v3fp, 3 * sizeof(float));
|
|
EXPECT_EQ(result, 0);
|
|
|
|
cmp[0] = -1.0f;
|
|
cmp[1] = 2.3f;
|
|
cmp[2] = 1000.0f;
|
|
v3f = cmp;
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3f[i], cmp[i]);
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, CastVector) {
|
|
FasTC::VectorBase<float, 3> v3f;
|
|
v3f[0] = 100000000000.0f;
|
|
v3f[1] = -2.0f;
|
|
v3f[2] = -1.1f;
|
|
|
|
FasTC::VectorBase<double, 3> v3d = v3f;
|
|
FasTC::VectorBase<int, 3> v3i = v3f;
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(v3d(i), static_cast<double>(v3f(i)));
|
|
EXPECT_EQ(v3i(i), static_cast<int>(v3f(i)));
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, DotProduct) {
|
|
int iv[5] = { -2, -1, 0, 1, 2 };
|
|
FasTC::VectorBase<int, 5> v5i(iv);
|
|
|
|
unsigned uv[5] = { 1, 2, 3, 4, 5 };
|
|
FasTC::VectorBase<unsigned, 5> v5u(uv);
|
|
|
|
EXPECT_EQ(v5i.Dot(v5u), 10);
|
|
EXPECT_EQ(v5u.Dot(v5i), 10);
|
|
|
|
EXPECT_EQ(v5i * v5u, 10);
|
|
EXPECT_EQ(v5u * v5i, 10);
|
|
}
|
|
|
|
TEST(VectorBase, Length) {
|
|
int iv[5] = { 1, 2, 3, 4, 5 };
|
|
FasTC::VectorBase<int, 5> v5i (iv);
|
|
|
|
EXPECT_EQ(v5i.LengthSq(), 55);
|
|
EXPECT_EQ(v5i.Length(), 7);
|
|
|
|
float fv[6] = {1, 2, 3, 4, 5, 6};
|
|
FasTC::VectorBase<float, 6> v6f (fv);
|
|
|
|
EXPECT_EQ(v6f.LengthSq(), 91);
|
|
EXPECT_NEAR(v6f.Length(), sqrt(91.0f), kEpsilon);
|
|
}
|
|
|
|
TEST(VectorBase, Normalization) {
|
|
float fv[2] = {1, 0};
|
|
FasTC::VectorBase<float, 2> v2f (fv);
|
|
v2f.Normalize();
|
|
EXPECT_EQ(v2f[0], 1);
|
|
EXPECT_EQ(v2f[1], 0);
|
|
|
|
// Normalized vector should be sqrt(2) for each axis, although
|
|
// this can't be represented as integers...
|
|
unsigned uv[2] = {2, 2};
|
|
FasTC::VectorBase<unsigned, 2> v2u (uv);
|
|
v2u.Normalize();
|
|
EXPECT_EQ(v2u[0], 1);
|
|
EXPECT_EQ(v2u[1], 1);
|
|
|
|
const double sqrt2 = sqrt(2)/2.0f;
|
|
for(int i = 2; i < 10; i++) {
|
|
v2f[0] = static_cast<float>(i);
|
|
v2f[1] = static_cast<float>(i);
|
|
v2f.Normalize();
|
|
EXPECT_NEAR(v2f[0], sqrt2, kEpsilon);
|
|
EXPECT_NEAR(v2f[1], sqrt2, kEpsilon);
|
|
}
|
|
}
|
|
|
|
TEST(VectorBase, Scaling) {
|
|
float fv[2] = {1.0f, 3.0f};
|
|
FasTC::VectorBase<float, 2> v2f (fv);
|
|
FasTC::VectorBase<float, 2> v2fd = v2f * 3.0f;
|
|
EXPECT_NEAR(v2fd[0], 3.0f, kEpsilon);
|
|
EXPECT_NEAR(v2fd[1], 9.0f, kEpsilon);
|
|
|
|
v2fd = -1.0 * v2f;
|
|
EXPECT_NEAR(v2fd[0], -1.0f, kEpsilon);
|
|
EXPECT_NEAR(v2fd[1], -3.0f, kEpsilon);
|
|
|
|
v2fd = v2f / 3;
|
|
EXPECT_NEAR(v2fd[0], 1.0f / 3.0f, kEpsilon);
|
|
EXPECT_NEAR(v2fd[1], 1.0f, kEpsilon);
|
|
|
|
unsigned uv[2] = {1, 3};
|
|
FasTC::VectorBase<unsigned, 2> v2u (uv);
|
|
FasTC::VectorBase<unsigned, 2> v2ud = v2u * 0.5;
|
|
EXPECT_EQ(v2ud[0], 0);
|
|
EXPECT_EQ(v2ud[1], 1);
|
|
|
|
v2ud = v2u / 0.5f;
|
|
EXPECT_EQ(v2ud[0], 2);
|
|
EXPECT_EQ(v2ud[1], 6);
|
|
}
|
|
|
|
TEST(VectorBase, Addition) {
|
|
float fv[2] = {1.1f, 3.2f};
|
|
FasTC::VectorBase<float, 2> v2f (fv);
|
|
|
|
int uv[2] = {5, 2};
|
|
FasTC::VectorBase<int, 2> v2u (uv);
|
|
|
|
FasTC::VectorBase<int, 2> au = v2u + v2f;
|
|
EXPECT_EQ(au[0], 6);
|
|
EXPECT_EQ(au[1], 5);
|
|
|
|
au = v2u + fv + uv;
|
|
EXPECT_EQ(au[0], 11);
|
|
EXPECT_EQ(au[1], 7);
|
|
|
|
FasTC::VectorBase<float, 2> af = v2f + v2u;
|
|
EXPECT_NEAR(af[0], 6.1f, kEpsilon);
|
|
EXPECT_NEAR(af[1], 5.2f, kEpsilon);
|
|
|
|
au = v2u - v2f;
|
|
EXPECT_EQ(au[0], 4);
|
|
EXPECT_EQ(au[1], -1);
|
|
|
|
af = v2f - v2u;
|
|
EXPECT_NEAR(af[0], -3.9f, kEpsilon);
|
|
EXPECT_NEAR(af[1], 1.2f, kEpsilon);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vec2
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Vector2.h"
|
|
|
|
TEST(Vector2, BaseFunctionality) {
|
|
FasTC::Vec2f v2f;
|
|
FasTC::Vec2d v2d;
|
|
v2d.X() = 3.0;
|
|
v2d.Y() = -10.0;
|
|
|
|
v2f = v2d;
|
|
EXPECT_EQ(v2f[0], v2d[0]);
|
|
EXPECT_EQ(v2f[1], v2d[1]);
|
|
}
|
|
|
|
TEST(Vector2, Accessors) {
|
|
float fv[2] = { 1.0f, 2.0f };
|
|
FasTC::Vec2f v2f (fv);
|
|
EXPECT_EQ(v2f.X(), 1.0f);
|
|
EXPECT_EQ(v2f.Y(), 2.0f);
|
|
|
|
v2f.X() = 4.0f;
|
|
v2f.Y() = 5.0f;
|
|
|
|
EXPECT_EQ(v2f.X(), 4.0f);
|
|
EXPECT_EQ(v2f.Y(), 5.0f);
|
|
}
|
|
|
|
TEST(Vector2, Addition) {
|
|
float fv[2] = { 1.0f, 2.0f };
|
|
FasTC::Vec2f v2f (fv);
|
|
|
|
double dv[2] = { 4.3, -10.2 };
|
|
FasTC::Vec2d v2d (dv);
|
|
|
|
EXPECT_NEAR((v2f + v2d).X(), 5.3, kEpsilon);
|
|
EXPECT_NEAR((v2f + v2d).Y(), -8.2, kEpsilon);
|
|
}
|
|
|
|
TEST(Vector2, Swizzle) {
|
|
float fv[2] = {1.0f, 2.0f};
|
|
FasTC::Vec2f v;
|
|
v = fv;
|
|
|
|
EXPECT_EQ(v.XX().X(), 1.0f);
|
|
EXPECT_EQ(v.XX().Y(), 1.0f);
|
|
EXPECT_EQ(v.YY().X(), 2.0f);
|
|
EXPECT_EQ(v.YY().Y(), 2.0f);
|
|
EXPECT_EQ(v.YX().X(), 2.0f);
|
|
EXPECT_EQ(v.YX().Y(), 1.0f);
|
|
EXPECT_EQ(v.XY().X(), 1.0f);
|
|
EXPECT_EQ(v.XY().Y(), 2.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vec3
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Vector3.h"
|
|
|
|
TEST(Vector3, BaseFunctionality) {
|
|
FasTC::Vec3f vf;
|
|
FasTC::Vec3d vd;
|
|
vd.X() = 3.0;
|
|
vd.Y() = -10.0;
|
|
vd.Z() = 0.0;
|
|
|
|
vf = vd;
|
|
for(int i = 0; i < 3; i++) {
|
|
EXPECT_EQ(vf[i], vd[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Vector3, Accessors) {
|
|
float fv[3] = { 1.0f, 2.0f, 3.0f };
|
|
FasTC::Vec3f v3f (fv);
|
|
EXPECT_EQ(v3f.X(), 1.0f);
|
|
EXPECT_EQ(v3f.Y(), 2.0f);
|
|
EXPECT_EQ(v3f.Z(), 3.0f);
|
|
|
|
v3f.X() = 4.0f;
|
|
v3f.Y() = 5.0f;
|
|
v3f.Z() = 6.0f;
|
|
|
|
EXPECT_EQ(v3f.X(), 4.0f);
|
|
EXPECT_EQ(v3f.Y(), 5.0f);
|
|
EXPECT_EQ(v3f.Z(), 6.0f);
|
|
}
|
|
|
|
TEST(Vector3, Addition) {
|
|
float fv[3] = { 1.0f, 2.0f, 3.0f };
|
|
FasTC::Vec3f v3f (fv);
|
|
|
|
double dv[3] = { 4.3, -10.2, 0.0f };
|
|
FasTC::Vec3d v3d (dv);
|
|
|
|
EXPECT_NEAR((v3f + v3d).X(), 5.3, kEpsilon);
|
|
EXPECT_NEAR((v3f + v3d).Y(), -8.2, kEpsilon);
|
|
EXPECT_NEAR((v3f + v3d).Z(), 3.0, kEpsilon);
|
|
}
|
|
|
|
TEST(Vector3, Swizzle) {
|
|
float fv[3] = {1.0f, 2.0f, 3.0f};
|
|
FasTC::Vec3f v;
|
|
v = fv;
|
|
|
|
EXPECT_EQ(v.XXX().Y(), 1.0f);
|
|
EXPECT_EQ(v.YZX().X(), 2.0f);
|
|
EXPECT_EQ(v.ZZY().Z(), 2.0f);
|
|
EXPECT_EQ(v.ZYZ().X(), 3.0f);
|
|
}
|
|
|
|
TEST(Vector3, CrossProduct) {
|
|
float fv[3] = {1.0f, 2.0f, 3.0f};
|
|
FasTC::Vec3f v1 (fv);
|
|
FasTC::Vec3f v2 = v1;
|
|
std::swap(v1.X(), v1.Z());
|
|
|
|
// Right handed coordinate system...
|
|
FasTC::Vec3f r = v1.Cross(v2);
|
|
EXPECT_NEAR(r.X(), 4.0f, kEpsilon);
|
|
EXPECT_NEAR(r.Y(), -8.0f, kEpsilon);
|
|
EXPECT_NEAR(r.Z(), 4.0f, kEpsilon);
|
|
|
|
v1.X() = v1.Y() = v2.X() = v2.Z() = 0.0f;
|
|
v1.Z() = v2.Y() = 1.0f;
|
|
|
|
r = v1.Cross(v2);
|
|
EXPECT_EQ(r.X(), -1.0f);
|
|
EXPECT_EQ(r.Y(), 0.0f);
|
|
EXPECT_EQ(r.Z(), 0.0f);
|
|
|
|
r = v2.Cross(v1);
|
|
EXPECT_EQ(r.X(), 1.0f);
|
|
EXPECT_EQ(r.Y(), 0.0f);
|
|
EXPECT_EQ(r.Z(), 0.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Vec4
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "Vector4.h"
|
|
|
|
TEST(Vector4, BaseFunctionality) {
|
|
FasTC::Vec4f vf;
|
|
FasTC::Vec4d vd;
|
|
vd.X() = 3.0;
|
|
vd.Y() = -10.0;
|
|
vd.Z() = 0.0;
|
|
vd.W() = 100000000.0;
|
|
|
|
vf = vd;
|
|
for(int i = 0; i < 4; i++) {
|
|
EXPECT_EQ(vf[i], vd[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Vector4, Accessors) {
|
|
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
|
|
FasTC::Vec4f v4f (fv);
|
|
EXPECT_EQ(v4f.X(), 1.0f);
|
|
EXPECT_EQ(v4f.Y(), 2.0f);
|
|
EXPECT_EQ(v4f.Z(), 3.0f);
|
|
EXPECT_EQ(v4f.W(), 4.0f);
|
|
|
|
v4f.X() = 5.0f;
|
|
v4f.Y() = 6.0f;
|
|
v4f.Z() = 7.0f;
|
|
v4f.W() = 8.0f;
|
|
|
|
EXPECT_EQ(v4f.X(), 5.0f);
|
|
EXPECT_EQ(v4f.Y(), 6.0f);
|
|
EXPECT_EQ(v4f.Z(), 7.0f);
|
|
EXPECT_EQ(v4f.W(), 8.0f);
|
|
}
|
|
|
|
TEST(Vector4, Addition) {
|
|
float fv[4] = { 1.0f, 2.0f, 3.0f, 4.0f };
|
|
FasTC::Vec4f v4f (fv);
|
|
|
|
double dv[4] = { 4.3, -10.2, 0.0f, -22.0f };
|
|
FasTC::Vec4d v3d (dv);
|
|
|
|
EXPECT_NEAR((v4f + v3d).X(), 5.3, kEpsilon);
|
|
EXPECT_NEAR((v4f + v3d).Y(), -8.2, kEpsilon);
|
|
EXPECT_NEAR((v4f + v3d).Z(), 3.0, kEpsilon);
|
|
EXPECT_NEAR((v4f + v3d).W(), -18.0, kEpsilon);
|
|
}
|
|
|
|
TEST(Vector4, Swizzle) {
|
|
float fv[4] = {1.0f, 2.0f, 3.0f, 4.0f};
|
|
FasTC::Vec4f v;
|
|
v = fv;
|
|
|
|
EXPECT_EQ(v.XXXX().Y(), 1.0f);
|
|
EXPECT_EQ(v.YZXW().X(), 2.0f);
|
|
EXPECT_EQ(v.ZWY().Z(), 2.0f);
|
|
EXPECT_EQ(v.ZZ().X(), 3.0f);
|
|
EXPECT_EQ(v.WWXY().W(), 2.0f);
|
|
}
|