#ifdef _MSC_VER #include typedef UINT32 uint32_t; #else #include #endif /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_ULONG_BE #define GET_ULONG_BE(n,b,i) \ { \ (n) = ( (unsigned long) (b)[(i) ] << 24 ) \ | ( (unsigned long) (b)[(i) + 1] << 16 ) \ | ( (unsigned long) (b)[(i) + 2] << 8 ) \ | ( (unsigned long) (b)[(i) + 3] ); \ } #endif #ifndef PUT_ULONG_BE #define PUT_ULONG_BE(n,b,i) \ { \ (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ (b)[(i) + 3] = (unsigned char) ( (n) ); \ } #endif int unhexify(unsigned char *obuf, const char *ibuf) { unsigned char c, c2; int len = strlen(ibuf) / 2; assert(!(strlen(ibuf) %1)); // must be even number of bytes while (*ibuf != 0) { c = *ibuf++; if( c >= '0' && c <= '9' ) c -= '0'; else if( c >= 'a' && c <= 'f' ) c -= 'a' - 10; else if( c >= 'A' && c <= 'F' ) c -= 'A' - 10; else assert( 0 ); c2 = *ibuf++; if( c2 >= '0' && c2 <= '9' ) c2 -= '0'; else if( c2 >= 'a' && c2 <= 'f' ) c2 -= 'a' - 10; else if( c2 >= 'A' && c2 <= 'F' ) c2 -= 'A' - 10; else assert( 0 ); *obuf++ = ( c << 4 ) | c2; } return len; } void hexify(unsigned char *obuf, const unsigned char *ibuf, int len) { unsigned char l, h; while (len != 0) { h = (*ibuf) / 16; l = (*ibuf) % 16; if( h < 10 ) *obuf++ = '0' + h; else *obuf++ = 'a' + h - 10; if( l < 10 ) *obuf++ = '0' + l; else *obuf++ = 'a' + l - 10; ++ibuf; len--; } } /** * This function just returns data from rand(). * Although predictable and often similar on multiple * runs, this does not result in identical random on * each run. So do not use this if the results of a * test depend on the random data that is generated. * * rng_state shall be NULL. */ static int rnd_std_rand( void *rng_state ) { if( rng_state != NULL ) rng_state = NULL; return( rand() ); } /** * This function only returns zeros * * rng_state shall be NULL. */ static int rnd_zero_rand( void *rng_state ) { if( rng_state != NULL ) rng_state = NULL; return( 0 ); } typedef struct { unsigned char *buf; int length; int per_call; } rnd_buf_info; /** * This function returns random based on a buffer it receives. * * rng_state shall be a pointer to a rnd_buf_info structure. * * The number of bytes released from the buffer on each call to * the random function is specified by per_call. (Can be between * 1 and 4) * * After the buffer is empty it will return rand(); */ static int rnd_buffer_rand( void *rng_state ) { rnd_buf_info *info = (rnd_buf_info *) rng_state; int res; if( rng_state == NULL ) return( rand() ); if( info->per_call > 4 ) info->per_call = 4; else if( info->per_call < 1 ) info->per_call = 1; res = rand(); if( info->length >= info->per_call ) { memcpy( &res, info->buf, info->per_call ); info->buf += info->per_call; info->length -= info->per_call; } else if( info->length > 0 ) { memcpy( &res, info->buf, info->length ); info->length = 0; } return( res ); } /** * Info structure for the pseudo random function * * Key should be set at the start to a test-unique value. * Do not forget endianness! * State( v0, v1 ) should be set to zero. */ typedef struct { uint32_t key[16]; uint32_t v0, v1; } rnd_pseudo_info; /** * This function returns random based on a pseudo random function. * This means the results should be identical on all systems. * Pseudo random is based on the XTEA encryption algorithm to * generate pseudorandom. * * rng_state shall be a pointer to a rnd_pseudo_info structure. */ static int rnd_pseudo_rand( void *rng_state ) { rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state; uint32_t i, *k, sum = 0, delta=0x9E3779B9; if( rng_state == NULL ) return( rand() ); k = info->key; for( i = 0; i < 32; i++ ) { info->v0 += (((info->v1 << 4) ^ (info->v1 >> 5)) + info->v1) ^ (sum + k[sum & 3]); sum += delta; info->v1 += (((info->v0 << 4) ^ (info->v0 >> 5)) + info->v0) ^ (sum + k[(sum>>11) & 3]); } return( info->v0 ); }