/** * \file bignum.h */ #ifndef POLARSSL_BIGNUM_H #define POLARSSL_BIGNUM_H #include #define POLARSSL_ERR_MPI_FILE_IO_ERROR -0x0002 #define POLARSSL_ERR_MPI_BAD_INPUT_DATA -0x0004 #define POLARSSL_ERR_MPI_INVALID_CHARACTER -0x0006 #define POLARSSL_ERR_MPI_BUFFER_TOO_SMALL -0x0008 #define POLARSSL_ERR_MPI_NEGATIVE_VALUE -0x000A #define POLARSSL_ERR_MPI_DIVISION_BY_ZERO -0x000C #define POLARSSL_ERR_MPI_NOT_ACCEPTABLE -0x000E #define MPI_CHK(f) if( ( ret = f ) != 0 ) goto cleanup /* * Define the base integer type, architecture-wise */ #if defined(POLARSSL_HAVE_INT8) typedef unsigned char t_int; typedef unsigned short t_dbl; #else #if defined(POLARSSL_HAVE_INT16) typedef unsigned short t_int; typedef unsigned long t_dbl; #else typedef unsigned long t_int; #if defined(_MSC_VER) && defined(_M_IX86) typedef unsigned __int64 t_dbl; #else #if defined(__amd64__) || defined(__x86_64__) || \ defined(__ppc64__) || defined(__powerpc64__) || \ defined(__ia64__) || defined(__alpha__) typedef unsigned int t_dbl __attribute__((mode(TI))); #else typedef unsigned long long t_dbl; #endif #endif #endif #endif /** * \brief MPI structure */ typedef struct { int s; /*!< integer sign */ int n; /*!< total # of limbs */ t_int *p; /*!< pointer to limbs */ } mpi; #ifdef __cplusplus extern "C" { #endif /** * \brief Initialize one or more mpi */ void mpi_init( mpi *X, ... ); /** * \brief Unallocate one or more mpi */ void mpi_free( mpi *X, ... ); /** * \brief Enlarge to the specified number of limbs * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_grow( mpi *X, int nblimbs ); /** * \brief Copy the contents of Y into X * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_copy( mpi *X, mpi *Y ); /** * \brief Swap the contents of X and Y */ void mpi_swap( mpi *X, mpi *Y ); /** * \brief Set value from integer * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_lset( mpi *X, int z ); /** * \brief Return the number of least significant bits */ int mpi_lsb( mpi *X ); /** * \brief Return the number of most significant bits */ int mpi_msb( mpi *X ); /** * \brief Return the total size in bytes */ int mpi_size( mpi *X ); /** * \brief Import from an ASCII string * * \param X destination mpi * \param radix input numeric base * \param s null-terminated string buffer * * \return 0 if successful, or an POLARSSL_ERR_MPI_XXX error code */ int mpi_read_string( mpi *X, int radix, char *s ); /** * \brief Export into an ASCII string * * \param X source mpi * \param radix output numeric base * \param s string buffer * \param slen string buffer size * * \return 0 if successful, or an POLARSSL_ERR_MPI_XXX error code * * \note Call this function with *slen = 0 to obtain the * minimum required buffer size in *slen. */ int mpi_write_string( mpi *X, int radix, char *s, int *slen ); /** * \brief Read X from an opened file * * \param X destination mpi * \param radix input numeric base * \param fin input file handle * * \return 0 if successful, or an POLARSSL_ERR_MPI_XXX error code */ int mpi_read_file( mpi *X, int radix, FILE *fin ); /** * \brief Write X into an opened file, or stdout * * \param p prefix, can be NULL * \param X source mpi * \param radix output numeric base * \param fout output file handle * * \return 0 if successful, or an POLARSSL_ERR_MPI_XXX error code * * \note Set fout == NULL to print X on the console. */ int mpi_write_file( char *p, mpi *X, int radix, FILE *fout ); /** * \brief Import X from unsigned binary data, big endian * * \param X destination mpi * \param buf input buffer * \param buflen input buffer size * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_read_binary( mpi *X, unsigned char *buf, int buflen ); /** * \brief Export X into unsigned binary data, big endian * * \param X source mpi * \param buf output buffer * \param buflen output buffer size * * \return 0 if successful, * POLARSSL_ERR_MPI_BUFFER_TOO_SMALL if buf isn't large enough * * \note Call this function with *buflen = 0 to obtain the * minimum required buffer size in *buflen. */ int mpi_write_binary( mpi *X, unsigned char *buf, int buflen ); /** * \brief Left-shift: X <<= count * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_shift_l( mpi *X, int count ); /** * \brief Right-shift: X >>= count * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_shift_r( mpi *X, int count ); /** * \brief Compare unsigned values * * \return 1 if |X| is greater than |Y|, * -1 if |X| is lesser than |Y| or * 0 if |X| is equal to |Y| */ int mpi_cmp_abs( mpi *X, mpi *Y ); /** * \brief Compare signed values * * \return 1 if X is greater than Y, * -1 if X is lesser than Y or * 0 if X is equal to Y */ int mpi_cmp_mpi( mpi *X, mpi *Y ); /** * \brief Compare signed values * * \return 1 if X is greater than z, * -1 if X is lesser than z or * 0 if X is equal to z */ int mpi_cmp_int( mpi *X, int z ); /** * \brief Unsigned addition: X = |A| + |B| * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_add_abs( mpi *X, mpi *A, mpi *B ); /** * \brief Unsigned substraction: X = |A| - |B| * * \return 0 if successful, * POLARSSL_ERR_MPI_NEGATIVE_VALUE if B is greater than A */ int mpi_sub_abs( mpi *X, mpi *A, mpi *B ); /** * \brief Signed addition: X = A + B * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_add_mpi( mpi *X, mpi *A, mpi *B ); /** * \brief Signed substraction: X = A - B * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_sub_mpi( mpi *X, mpi *A, mpi *B ); /** * \brief Signed addition: X = A + b * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_add_int( mpi *X, mpi *A, int b ); /** * \brief Signed substraction: X = A - b * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_sub_int( mpi *X, mpi *A, int b ); /** * \brief Baseline multiplication: X = A * B * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_mul_mpi( mpi *X, mpi *A, mpi *B ); /** * \brief Baseline multiplication: X = A * b * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_mul_int( mpi *X, mpi *A, t_int b ); /** * \brief Division by mpi: A = Q * B + R * * \return 0 if successful, * 1 if memory allocation failed, * POLARSSL_ERR_MPI_DIVISION_BY_ZERO if B == 0 * * \note Either Q or R can be NULL. */ int mpi_div_mpi( mpi *Q, mpi *R, mpi *A, mpi *B ); /** * \brief Division by int: A = Q * b + R * * \return 0 if successful, * 1 if memory allocation failed, * POLARSSL_ERR_MPI_DIVISION_BY_ZERO if b == 0 * * \note Either Q or R can be NULL. */ int mpi_div_int( mpi *Q, mpi *R, mpi *A, int b ); /** * \brief Modulo: R = A mod B * * \return 0 if successful, * 1 if memory allocation failed, * POLARSSL_ERR_MPI_DIVISION_BY_ZERO if B == 0 */ int mpi_mod_mpi( mpi *R, mpi *A, mpi *B ); /** * \brief Modulo: r = A mod b * * \return 0 if successful, * 1 if memory allocation failed, * POLARSSL_ERR_MPI_DIVISION_BY_ZERO if b == 0 */ int mpi_mod_int( t_int *r, mpi *A, int b ); /** * \brief Sliding-window exponentiation: X = A^E mod N * * \return 0 if successful, * 1 if memory allocation failed, * POLARSSL_ERR_MPI_BAD_INPUT_DATA if N is negative or even * * \note _RR is used to avoid re-computing R*R mod N across * multiple calls, which speeds up things a bit. It can * be set to NULL if the extra performance is unneeded. */ int mpi_exp_mod( mpi *X, mpi *A, mpi *E, mpi *N, mpi *_RR ); /** * \brief Greatest common divisor: G = gcd(A, B) * * \return 0 if successful, * 1 if memory allocation failed */ int mpi_gcd( mpi *G, mpi *A, mpi *B ); /** * \brief Modular inverse: X = A^-1 mod N * * \return 0 if successful, * 1 if memory allocation failed, * POLARSSL_ERR_MPI_BAD_INPUT_DATA if N is negative or nil * POLARSSL_ERR_MPI_NOT_ACCEPTABLE if A has no inverse mod N */ int mpi_inv_mod( mpi *X, mpi *A, mpi *N ); /** * \brief Miller-Rabin primality test * * \return 0 if successful (probably prime), * 1 if memory allocation failed, * POLARSSL_ERR_MPI_NOT_ACCEPTABLE if X is not prime */ int mpi_is_prime( mpi *X, int (*f_rng)(void *), void *p_rng ); /** * \brief Prime number generation * * \param X destination mpi * \param nbits required size of X in bits * \param dh_flag if 1, then (X-1)/2 will be prime too * \param f_rng RNG function * \param p_rng RNG parameter * * \return 0 if successful (probably prime), * 1 if memory allocation failed, * POLARSSL_ERR_MPI_BAD_INPUT_DATA if nbits is < 3 */ int mpi_gen_prime( mpi *X, int nbits, int dh_flag, int (*f_rng)(void *), void *p_rng ); /** * \brief Checkup routine * * \return 0 if successful, or 1 if the test failed */ int mpi_self_test( int verbose ); #ifdef __cplusplus } #endif #endif /* bignum.h */