mirror of
https://github.com/yuzu-emu/mbedtls
synced 2024-11-25 09:49:10 +00:00
618 lines
16 KiB
C
618 lines
16 KiB
C
/*
|
|
* Elliptic curves over GF(p)
|
|
*
|
|
* Copyright (C) 2012, Brainspark B.V.
|
|
*
|
|
* This file is part of PolarSSL (http://www.polarssl.org)
|
|
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
/*
|
|
* References:
|
|
*
|
|
* SEC1 http://www.secg.org/index.php?action=secg,docs_secg
|
|
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
|
|
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
|
|
*/
|
|
|
|
#include "polarssl/config.h"
|
|
|
|
#if defined(POLARSSL_ECP_C)
|
|
|
|
#include "polarssl/ecp.h"
|
|
|
|
/*
|
|
* Initialize (the components of) a point
|
|
*/
|
|
void ecp_point_init( ecp_point *pt )
|
|
{
|
|
if( pt == NULL )
|
|
return;
|
|
|
|
pt->is_zero = 1;
|
|
mpi_init( &pt->X );
|
|
mpi_init( &pt->Y );
|
|
}
|
|
|
|
/*
|
|
* Initialize (the components of) a group
|
|
*/
|
|
void ecp_group_init( ecp_group *grp )
|
|
{
|
|
if( grp == NULL )
|
|
return;
|
|
|
|
mpi_init( &grp->P );
|
|
mpi_init( &grp->B );
|
|
ecp_point_init( &grp->G );
|
|
mpi_init( &grp->N );
|
|
|
|
grp->modp = NULL;
|
|
grp->pbits = 0;
|
|
}
|
|
|
|
/*
|
|
* Unallocate (the components of) a point
|
|
*/
|
|
void ecp_point_free( ecp_point *pt )
|
|
{
|
|
if( pt == NULL )
|
|
return;
|
|
|
|
pt->is_zero = 1;
|
|
mpi_free( &( pt->X ) );
|
|
mpi_free( &( pt->Y ) );
|
|
}
|
|
|
|
/*
|
|
* Unallocate (the components of) a group
|
|
*/
|
|
void ecp_group_free( ecp_group *grp )
|
|
{
|
|
if( grp == NULL )
|
|
return;
|
|
|
|
mpi_free( &grp->P );
|
|
mpi_free( &grp->B );
|
|
ecp_point_free( &grp->G );
|
|
mpi_free( &grp->N );
|
|
}
|
|
|
|
/*
|
|
* Set point to zero
|
|
*/
|
|
void ecp_set_zero( ecp_point *pt )
|
|
{
|
|
pt->is_zero = 1;
|
|
mpi_free( &pt->X );
|
|
mpi_free( &pt->Y );
|
|
}
|
|
|
|
/*
|
|
* Copy the contents of Q into P
|
|
*/
|
|
int ecp_copy( ecp_point *P, const ecp_point *Q )
|
|
{
|
|
int ret = 0;
|
|
|
|
if( Q->is_zero ) {
|
|
ecp_set_zero( P );
|
|
return( ret );
|
|
}
|
|
|
|
P->is_zero = Q->is_zero;
|
|
MPI_CHK( mpi_copy( &P->X, &Q->X ) );
|
|
MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Import a non-zero point from ASCII strings
|
|
*/
|
|
int ecp_point_read_string( ecp_point *P, int radix,
|
|
const char *x, const char *y )
|
|
{
|
|
int ret = 0;
|
|
|
|
P->is_zero = 0;
|
|
MPI_CHK( mpi_read_string( &P->X, radix, x ) );
|
|
MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Import an ECP group from ASCII strings
|
|
*/
|
|
int ecp_group_read_string( ecp_group *grp, int radix,
|
|
const char *p, const char *b,
|
|
const char *gx, const char *gy, const char *n)
|
|
{
|
|
int ret = 0;
|
|
|
|
MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
|
|
MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
|
|
MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
|
|
MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Wrapper around fast quasi-modp functions, with fallback to mpi_mod_mpi
|
|
*
|
|
* The quasi-modp functions expect an mpi N such that 0 <= N < 2^(2*pbits)
|
|
* and change it in-place so that it can easily be brought in the 0..P-1
|
|
* range by a few additions or substractions.
|
|
*/
|
|
static int ecp_modp( mpi *N, const ecp_group *grp )
|
|
{
|
|
int ret = 0;
|
|
|
|
if( grp->modp == NULL )
|
|
return( mpi_mod_mpi( N, N, &grp->P ) );
|
|
|
|
if( mpi_cmp_int( N, 0 ) < 0 || mpi_msb( N ) > 2 * grp->pbits )
|
|
return( POLARSSL_ERR_ECP_GENERIC );
|
|
|
|
MPI_CHK( grp->modp( N ) );
|
|
|
|
while( mpi_cmp_int( N, 0 ) < 0 )
|
|
MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
|
|
|
|
while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
|
|
MPI_CHK( mpi_sub_mpi( N, N, &grp->P ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Size of p521 in terms of t_uint
|
|
*/
|
|
#define P521_SIZE_INT ( 521 / (sizeof( t_uint ) << 3) + 1 )
|
|
|
|
/*
|
|
* Bits to keep in the most significant t_uint
|
|
*/
|
|
#if defined(POLARSS_HAVE_INT8)
|
|
#define P521_MASK 0x01
|
|
#else
|
|
#define P521_MASK 0x01FF
|
|
#endif
|
|
|
|
/*
|
|
* Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
|
|
*
|
|
* It is required that 0 <= N < 2^(2*521) on entry.
|
|
* On exit, it is only guaranteed that 0 <= N < 2^(521+1).
|
|
*/
|
|
static int ecp_mod_p521( mpi *N )
|
|
{
|
|
int ret = 0;
|
|
t_uint Mp[P521_SIZE_INT];
|
|
mpi M;
|
|
|
|
if( N->n < P521_SIZE_INT )
|
|
return( 0 );
|
|
|
|
memset( Mp, 0, P521_SIZE_INT * sizeof( t_uint ) );
|
|
memcpy( Mp, N->p, P521_SIZE_INT * sizeof( t_uint ) );
|
|
Mp[P521_SIZE_INT - 1] &= P521_MASK;
|
|
|
|
M.s = 1;
|
|
M.n = P521_SIZE_INT;
|
|
M.p = Mp;
|
|
|
|
MPI_CHK( mpi_shift_r( N, 521 ) );
|
|
|
|
MPI_CHK( mpi_add_abs( N, N, &M ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Set a group using well-known domain parameters
|
|
*/
|
|
int ecp_use_known_dp( ecp_group *grp, size_t index )
|
|
{
|
|
switch( index )
|
|
{
|
|
case POLARSSL_ECP_DP_SECP192R1:
|
|
return( ecp_group_read_string( grp, 16,
|
|
POLARSSL_ECP_SECP192R1_P,
|
|
POLARSSL_ECP_SECP192R1_B,
|
|
POLARSSL_ECP_SECP192R1_GX,
|
|
POLARSSL_ECP_SECP192R1_GY,
|
|
POLARSSL_ECP_SECP192R1_N )
|
|
);
|
|
case POLARSSL_ECP_DP_SECP224R1:
|
|
return( ecp_group_read_string( grp, 16,
|
|
POLARSSL_ECP_SECP224R1_P,
|
|
POLARSSL_ECP_SECP224R1_B,
|
|
POLARSSL_ECP_SECP224R1_GX,
|
|
POLARSSL_ECP_SECP224R1_GY,
|
|
POLARSSL_ECP_SECP224R1_N )
|
|
);
|
|
case POLARSSL_ECP_DP_SECP256R1:
|
|
return( ecp_group_read_string( grp, 16,
|
|
POLARSSL_ECP_SECP256R1_P,
|
|
POLARSSL_ECP_SECP256R1_B,
|
|
POLARSSL_ECP_SECP256R1_GX,
|
|
POLARSSL_ECP_SECP256R1_GY,
|
|
POLARSSL_ECP_SECP256R1_N )
|
|
);
|
|
case POLARSSL_ECP_DP_SECP384R1:
|
|
return( ecp_group_read_string( grp, 16,
|
|
POLARSSL_ECP_SECP384R1_P,
|
|
POLARSSL_ECP_SECP384R1_B,
|
|
POLARSSL_ECP_SECP384R1_GX,
|
|
POLARSSL_ECP_SECP384R1_GY,
|
|
POLARSSL_ECP_SECP384R1_N )
|
|
);
|
|
case POLARSSL_ECP_DP_SECP521R1:
|
|
grp->modp = ecp_mod_p521;
|
|
grp->pbits = 521;
|
|
return( ecp_group_read_string( grp, 16,
|
|
POLARSSL_ECP_SECP521R1_P,
|
|
POLARSSL_ECP_SECP521R1_B,
|
|
POLARSSL_ECP_SECP521R1_GX,
|
|
POLARSSL_ECP_SECP521R1_GY,
|
|
POLARSSL_ECP_SECP521R1_N )
|
|
);
|
|
}
|
|
|
|
return( POLARSSL_ERR_ECP_GENERIC );
|
|
}
|
|
|
|
/*
|
|
* Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
|
|
*/
|
|
#define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) )
|
|
|
|
/*
|
|
* Reduce a mpi mod p in-place, to use after mpi_sub_mpi
|
|
*/
|
|
#define MOD_SUB( N ) \
|
|
while( mpi_cmp_int( &N, 0 ) < 0 ) \
|
|
MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
|
|
|
|
/*
|
|
* Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int
|
|
*/
|
|
#define MOD_ADD( N ) \
|
|
while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
|
|
MPI_CHK( mpi_sub_mpi( &N, &N, &grp->P ) )
|
|
|
|
/*
|
|
* Internal point format used for fast addition/doubling/multiplication:
|
|
* Jacobian coordinates (GECC example 3.20)
|
|
*/
|
|
typedef struct
|
|
{
|
|
mpi X, Y, Z;
|
|
}
|
|
ecp_ptjac;
|
|
|
|
/*
|
|
* Initialize a point in Jacobian coordinates
|
|
*/
|
|
static void ecp_ptjac_init( ecp_ptjac *P )
|
|
{
|
|
mpi_init( &P->X ); mpi_init( &P->Y ); mpi_init( &P->Z );
|
|
}
|
|
|
|
/*
|
|
* Free a point in Jacobian coordinates
|
|
*/
|
|
static void ecp_ptjac_free( ecp_ptjac *P )
|
|
{
|
|
mpi_free( &P->X ); mpi_free( &P->Y ); mpi_free( &P->Z );
|
|
}
|
|
|
|
/*
|
|
* Copy P to R in Jacobian coordinates
|
|
*/
|
|
static int ecp_ptjac_copy( ecp_ptjac *R, const ecp_ptjac *P )
|
|
{
|
|
int ret = 0;
|
|
|
|
MPI_CHK( mpi_copy( &R->X, &P->X ) );
|
|
MPI_CHK( mpi_copy( &R->Y, &P->Y ) );
|
|
MPI_CHK( mpi_copy( &R->Z, &P->Z ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Set P to zero in Jacobian coordinates
|
|
*/
|
|
static int ecp_ptjac_set_zero( ecp_ptjac *P )
|
|
{
|
|
int ret = 0;
|
|
|
|
MPI_CHK( mpi_lset( &P->X, 1 ) );
|
|
MPI_CHK( mpi_lset( &P->Y, 1 ) );
|
|
MPI_CHK( mpi_lset( &P->Z, 0 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Convert from affine to Jacobian coordinates
|
|
*/
|
|
static int ecp_aff_to_jac( ecp_ptjac *jac, const ecp_point *aff )
|
|
{
|
|
int ret = 0;
|
|
|
|
if( aff->is_zero )
|
|
return( ecp_ptjac_set_zero( jac ) );
|
|
|
|
MPI_CHK( mpi_copy( &jac->X, &aff->X ) );
|
|
MPI_CHK( mpi_copy( &jac->Y, &aff->Y ) );
|
|
MPI_CHK( mpi_lset( &jac->Z, 1 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Convert from Jacobian to affine coordinates
|
|
*/
|
|
static int ecp_jac_to_aff( const ecp_group *grp,
|
|
ecp_point *aff, const ecp_ptjac *jac )
|
|
{
|
|
int ret = 0;
|
|
mpi Zi, ZZi, T;
|
|
|
|
if( mpi_cmp_int( &jac->Z, 0 ) == 0 ) {
|
|
ecp_set_zero( aff );
|
|
return( 0 );
|
|
}
|
|
|
|
mpi_init( &Zi ); mpi_init( &ZZi ); mpi_init( &T );
|
|
|
|
aff->is_zero = 0;
|
|
|
|
/*
|
|
* aff.X = jac.X / (jac.Z)^2 mod p
|
|
*/
|
|
MPI_CHK( mpi_inv_mod( &Zi, &jac->Z, &grp->P ) );
|
|
MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
|
|
MPI_CHK( mpi_mul_mpi( &aff->X, &jac->X, &ZZi ) ); MOD_MUL( aff->X );
|
|
|
|
/*
|
|
* aff.Y = jac.Y / (jac.Z)^3 mod p
|
|
*/
|
|
MPI_CHK( mpi_mul_mpi( &aff->Y, &jac->Y, &ZZi ) ); MOD_MUL( aff->Y );
|
|
MPI_CHK( mpi_mul_mpi( &aff->Y, &aff->Y, &Zi ) ); MOD_MUL( aff->Y );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &Zi ); mpi_free( &ZZi ); mpi_free( &T );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Point doubling R = 2 P, Jacobian coordinates (GECC 3.21)
|
|
*/
|
|
static int ecp_double_jac( const ecp_group *grp, ecp_ptjac *R,
|
|
const ecp_ptjac *P )
|
|
{
|
|
int ret = 0;
|
|
mpi T1, T2, T3, X, Y, Z;
|
|
|
|
if( mpi_cmp_int( &P->Z, 0 ) == 0 )
|
|
return( ecp_ptjac_set_zero( R ) );
|
|
|
|
mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
|
|
mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &T2, &P->X, &T1 ) ); MOD_SUB( T2 );
|
|
MPI_CHK( mpi_add_mpi( &T1, &P->X, &T1 ) ); MOD_ADD( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T2, &T2, &T1 ) ); MOD_MUL( T2 );
|
|
MPI_CHK( mpi_mul_int( &T2, &T2, 3 ) ); MOD_ADD( T2 );
|
|
MPI_CHK( mpi_copy ( &Y, &P->Y ) );
|
|
MPI_CHK( mpi_shift_l( &Y, 1 ) ); MOD_ADD( Y );
|
|
MPI_CHK( mpi_mul_mpi( &Z, &Y, &P->Z ) ); MOD_MUL( Z );
|
|
MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &Y, &P->X ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y );
|
|
|
|
/*
|
|
* For Y = Y / 2 mod p, we must make sure that Y is even before
|
|
* using right-shift. No need to reduce mod p afterwards.
|
|
*/
|
|
if( mpi_get_bit( &Y, 0 ) == 1 )
|
|
MPI_CHK( mpi_add_mpi( &Y, &Y, &grp->P ) );
|
|
MPI_CHK( mpi_shift_r( &Y, 1 ) );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
|
|
MPI_CHK( mpi_copy ( &T1, &T3 ) );
|
|
MPI_CHK( mpi_shift_l( &T1, 1 ) ); MOD_ADD( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
|
|
MPI_CHK( mpi_sub_mpi( &T1, &T3, &X ) ); MOD_SUB( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T1, &T2 ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &Y, &T1, &Y ) ); MOD_SUB( Y );
|
|
|
|
MPI_CHK( mpi_copy( &R->X, &X ) );
|
|
MPI_CHK( mpi_copy( &R->Y, &Y ) );
|
|
MPI_CHK( mpi_copy( &R->Z, &Z ) );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
|
|
mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
|
|
*/
|
|
static int ecp_add_mixed( const ecp_group *grp, ecp_ptjac *R,
|
|
const ecp_ptjac *P, const ecp_point *Q )
|
|
{
|
|
int ret = 0;
|
|
mpi T1, T2, T3, T4, X, Y, Z;
|
|
|
|
/*
|
|
* Trivial cases: P == 0 or Q == 0
|
|
*/
|
|
if( mpi_cmp_int( &P->Z, 0 ) == 0 )
|
|
return( ecp_aff_to_jac( R, Q ) );
|
|
|
|
if( Q->is_zero )
|
|
return( ecp_ptjac_copy( R, P ) );
|
|
|
|
mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
|
|
mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
|
|
MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
|
|
|
|
if( mpi_cmp_int( &T1, 0 ) == 0 )
|
|
{
|
|
if( mpi_cmp_int( &T2, 0 ) == 0 )
|
|
{
|
|
ret = ecp_double_jac( grp, R, P );
|
|
goto cleanup;
|
|
}
|
|
else
|
|
{
|
|
ret = ecp_ptjac_set_zero( R );
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
|
|
MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
|
|
MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
|
|
MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
|
|
MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
|
|
|
|
MPI_CHK( mpi_copy( &R->X, &X ) );
|
|
MPI_CHK( mpi_copy( &R->Y, &Y ) );
|
|
MPI_CHK( mpi_copy( &R->Z, &Z ) );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
|
|
mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Addition: R = P + Q, affine wrapper
|
|
*/
|
|
int ecp_add( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point *P, const ecp_point *Q )
|
|
{
|
|
int ret = 0;
|
|
ecp_ptjac J;
|
|
|
|
ecp_ptjac_init( &J );
|
|
|
|
MPI_CHK( ecp_aff_to_jac( &J, P ) );
|
|
MPI_CHK( ecp_add_mixed( grp, &J, &J, Q ) );
|
|
MPI_CHK( ecp_jac_to_aff( grp, R, &J ) );
|
|
|
|
cleanup:
|
|
|
|
ecp_ptjac_free( &J );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Integer multiplication: R = m * P (GECC 5.7, SPA-resistant variant)
|
|
*/
|
|
int ecp_mul( const ecp_group *grp, ecp_point *R,
|
|
const mpi *m, const ecp_point *P )
|
|
{
|
|
int ret = 0;
|
|
size_t pos;
|
|
ecp_ptjac Q[2];
|
|
|
|
ecp_ptjac_init( &Q[0] ); ecp_ptjac_init( &Q[1] );
|
|
|
|
/*
|
|
* The general method works only for m >= 1
|
|
*/
|
|
if( mpi_cmp_int( m, 0 ) == 0 ) {
|
|
ecp_set_zero( R );
|
|
goto cleanup;
|
|
}
|
|
|
|
ecp_ptjac_set_zero( &Q[0] );
|
|
|
|
for( pos = mpi_msb( m ) - 1 ; ; pos-- )
|
|
{
|
|
MPI_CHK( ecp_double_jac( grp, &Q[0], &Q[0] ) );
|
|
MPI_CHK( ecp_add_mixed( grp, &Q[1], &Q[0], P ) );
|
|
MPI_CHK( ecp_ptjac_copy( &Q[0], &Q[ mpi_get_bit( m, pos ) ] ) );
|
|
|
|
if( pos == 0 )
|
|
break;
|
|
}
|
|
|
|
MPI_CHK( ecp_jac_to_aff( grp, R, &Q[0] ) );
|
|
|
|
cleanup:
|
|
|
|
ecp_ptjac_free( &Q[0] ); ecp_ptjac_free( &Q[1] );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
|
|
/*
|
|
* Checkup routine
|
|
*/
|
|
int ecp_self_test( int verbose )
|
|
{
|
|
return( verbose++ );
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|