fpu/softfloat: re-factor add/sub

We can now add float16_add/sub and use the common decompose and
canonicalize functions to have a single implementation for
float16/32/64 add and sub functions.

Backports commit 6fff216769cf7eaa3961c85dee7a72838696d365 from qemu
This commit is contained in:
Alex Bennée 2018-03-08 10:13:06 -05:00 committed by Lioncash
parent d80f1ea222
commit b1884d0685
No known key found for this signature in database
GPG key ID: 4E3C3CC1031BA9C7
2 changed files with 471 additions and 1 deletions

View file

@ -83,7 +83,7 @@ this code that are retained.
* target-dependent and needs the TARGET_* macros.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "fpu/softfloat.h"
/* We only need stdlib for abort() */
@ -271,6 +271,470 @@ static const FloatFmt float64_params = {
FLOAT_PARAMS(11, 52)
};
/* Unpack a float to parts, but do not canonicalize. */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
const int sign_pos = fmt.frac_size + fmt.exp_size;
FloatParts result;
result.cls = float_class_unclassified;
result.sign = extract64(raw, sign_pos, 1);
result.exp = extract64(raw, fmt.frac_size, fmt.exp_size);
result.frac = extract64(raw, 0, fmt.frac_size);
return result;
}
static inline FloatParts float16_unpack_raw(float16 f)
{
return unpack_raw(float16_params, f);
}
static inline FloatParts float32_unpack_raw(float32 f)
{
return unpack_raw(float32_params, f);
}
static inline FloatParts float64_unpack_raw(float64 f)
{
return unpack_raw(float64_params, f);
}
/* Pack a float from parts, but do not canonicalize. */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
const int sign_pos = fmt.frac_size + fmt.exp_size;
uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
return deposit64(ret, sign_pos, 1, p.sign);
}
static inline float16 float16_pack_raw(FloatParts p)
{
return make_float16(pack_raw(float16_params, p));
}
static inline float32 float32_pack_raw(FloatParts p)
{
return make_float32(pack_raw(float32_params, p));
}
static inline float64 float64_pack_raw(FloatParts p)
{
return make_float64(pack_raw(float64_params, p));
}
/* Canonicalize EXP and FRAC, setting CLS. */
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
float_status *status)
{
if (part.exp == parm->exp_max) {
if (part.frac == 0) {
part.cls = float_class_inf;
} else {
#ifdef NO_SIGNALING_NANS
part.cls = float_class_qnan;
#else
int64_t msb = part.frac << (parm->frac_shift + 2);
if ((msb < 0) == status->snan_bit_is_one) {
part.cls = float_class_snan;
} else {
part.cls = float_class_qnan;
}
#endif
}
} else if (part.exp == 0) {
if (likely(part.frac == 0)) {
part.cls = float_class_zero;
} else if (status->flush_inputs_to_zero) {
float_raise(float_flag_input_denormal, status);
part.cls = float_class_zero;
part.frac = 0;
} else {
int shift = clz64(part.frac) - 1;
part.cls = float_class_normal;
part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
part.frac <<= shift;
}
} else {
part.cls = float_class_normal;
part.exp -= parm->exp_bias;
part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
}
return part;
}
/* Round and uncanonicalize a floating-point number by parts. There
* are FRAC_SHIFT bits that may require rounding at the bottom of the
* fraction; these bits will be removed. The exponent will be biased
* by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
*/
static FloatParts round_canonical(FloatParts p, float_status *s,
const FloatFmt *parm)
{
const uint64_t frac_lsbm1 = parm->frac_lsbm1;
const uint64_t round_mask = parm->round_mask;
const uint64_t roundeven_mask = parm->roundeven_mask;
const int exp_max = parm->exp_max;
const int frac_shift = parm->frac_shift;
uint64_t frac, inc;
int exp, flags = 0;
bool overflow_norm;
frac = p.frac;
exp = p.exp;
switch (p.cls) {
case float_class_normal:
switch (s->float_rounding_mode) {
case float_round_nearest_even:
overflow_norm = false;
inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
break;
case float_round_ties_away:
overflow_norm = false;
inc = frac_lsbm1;
break;
case float_round_to_zero:
overflow_norm = true;
inc = 0;
break;
case float_round_up:
inc = p.sign ? 0 : round_mask;
overflow_norm = p.sign;
break;
case float_round_down:
inc = p.sign ? round_mask : 0;
overflow_norm = !p.sign;
break;
default:
g_assert_not_reached();
}
exp += parm->exp_bias;
if (likely(exp > 0)) {
if (frac & round_mask) {
flags |= float_flag_inexact;
frac += inc;
if (frac & DECOMPOSED_OVERFLOW_BIT) {
frac >>= 1;
exp++;
}
}
frac >>= frac_shift;
if (unlikely(exp >= exp_max)) {
flags |= float_flag_overflow | float_flag_inexact;
if (overflow_norm) {
exp = exp_max - 1;
frac = -1;
} else {
p.cls = float_class_inf;
goto do_inf;
}
}
} else if (s->flush_to_zero) {
flags |= float_flag_output_denormal;
p.cls = float_class_zero;
goto do_zero;
} else {
bool is_tiny = (s->float_detect_tininess
== float_tininess_before_rounding)
|| (exp < 0)
|| !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
shift64RightJamming(frac, 1 - exp, &frac);
if (frac & round_mask) {
/* Need to recompute round-to-even. */
if (s->float_rounding_mode == float_round_nearest_even) {
inc = ((frac & roundeven_mask) != frac_lsbm1
? frac_lsbm1 : 0);
}
flags |= float_flag_inexact;
frac += inc;
}
exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
frac >>= frac_shift;
if (is_tiny && (flags & float_flag_inexact)) {
flags |= float_flag_underflow;
}
if (exp == 0 && frac == 0) {
p.cls = float_class_zero;
}
}
break;
case float_class_zero:
do_zero:
exp = 0;
frac = 0;
break;
case float_class_inf:
do_inf:
exp = exp_max;
frac = 0;
break;
case float_class_qnan:
case float_class_snan:
exp = exp_max;
break;
default:
g_assert_not_reached();
}
float_raise(flags, s);
p.exp = exp;
p.frac = frac;
return p;
}
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
return canonicalize(float16_unpack_raw(f), &float16_params, s);
}
static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
switch (p.cls) {
case float_class_dnan:
return float16_default_nan(s);
case float_class_msnan:
return float16_maybe_silence_nan(float16_pack_raw(p), s);
default:
p = round_canonical(p, s, &float16_params);
return float16_pack_raw(p);
}
}
static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
return canonicalize(float32_unpack_raw(f), &float32_params, s);
}
static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
switch (p.cls) {
case float_class_dnan:
return float32_default_nan(s);
case float_class_msnan:
return float32_maybe_silence_nan(float32_pack_raw(p), s);
default:
p = round_canonical(p, s, &float32_params);
return float32_pack_raw(p);
}
}
static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
return canonicalize(float64_unpack_raw(f), &float64_params, s);
}
static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
switch (p.cls) {
case float_class_dnan:
return float64_default_nan(s);
case float_class_msnan:
return float64_maybe_silence_nan(float64_pack_raw(p), s);
default:
p = round_canonical(p, s, &float64_params);
return float64_pack_raw(p);
}
}
/* Simple helpers for checking if what NaN we have */
static bool is_nan(FloatClass c)
{
return unlikely(c >= float_class_qnan);
}
static bool is_snan(FloatClass c)
{
return c == float_class_snan;
}
static bool is_qnan(FloatClass c)
{
return c == float_class_qnan;
}
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
if (is_snan(a.cls) || is_snan(b.cls)) {
s->float_exception_flags |= float_flag_invalid;
}
if (s->default_nan_mode) {
a.cls = float_class_dnan;
} else {
if (pickNaN(is_qnan(a.cls), is_snan(a.cls),
is_qnan(b.cls), is_snan(b.cls),
a.frac > b.frac ||
(a.frac == b.frac && a.sign < b.sign))) {
a = b;
}
a.cls = float_class_msnan;
}
return a;
}
/*
* Returns the result of adding or subtracting the values of the
* floating-point values `a' and `b'. The operation is performed
* according to the IEC/IEEE Standard for Binary Floating-Point
* Arithmetic.
*/
static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
float_status *s)
{
bool a_sign = a.sign;
bool b_sign = b.sign ^ subtract;
if (a_sign != b_sign) {
/* Subtraction */
if (a.cls == float_class_normal && b.cls == float_class_normal) {
if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
a.frac = a.frac - b.frac;
} else {
shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
a.frac = b.frac - a.frac;
a.exp = b.exp;
a_sign ^= 1;
}
if (a.frac == 0) {
a.cls = float_class_zero;
a.sign = s->float_rounding_mode == float_round_down;
} else {
int shift = clz64(a.frac) - 1;
a.frac = a.frac << shift;
a.exp = a.exp - shift;
a.sign = a_sign;
}
return a;
}
if (is_nan(a.cls) || is_nan(b.cls)) {
return pick_nan(a, b, s);
}
if (a.cls == float_class_inf) {
if (b.cls == float_class_inf) {
float_raise(float_flag_invalid, s);
a.cls = float_class_dnan;
}
return a;
}
if (a.cls == float_class_zero && b.cls == float_class_zero) {
a.sign = s->float_rounding_mode == float_round_down;
return a;
}
if (a.cls == float_class_zero || b.cls == float_class_inf) {
b.sign = a_sign ^ 1;
return b;
}
if (b.cls == float_class_zero) {
return a;
}
} else {
/* Addition */
if (a.cls == float_class_normal && b.cls == float_class_normal) {
if (a.exp > b.exp) {
shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
} else if (a.exp < b.exp) {
shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
a.exp = b.exp;
}
a.frac += b.frac;
if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
a.frac >>= 1;
a.exp += 1;
}
return a;
}
if (is_nan(a.cls) || is_nan(b.cls)) {
return pick_nan(a, b, s);
}
if (a.cls == float_class_inf || b.cls == float_class_zero) {
return a;
}
if (b.cls == float_class_inf || a.cls == float_class_zero) {
b.sign = b_sign;
return b;
}
}
g_assert_not_reached();
}
/*
* Returns the result of adding or subtracting the floating-point
* values `a' and `b'. The operation is performed according to the
* IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*/
float16 QEMU_FLATTEN float16_add(float16 a, float16 b,
float_status *status)
{
FloatParts pa = float16_unpack_canonical(a, status);
FloatParts pb = float16_unpack_canonical(b, status);
FloatParts pr = addsub_floats(pa, pb, false, status);
return float16_round_pack_canonical(pr, status);
}
float32 QEMU_FLATTEN float32_add(float32 a, float32 b,
float_status *status)
{
FloatParts pa = float32_unpack_canonical(a, status);
FloatParts pb = float32_unpack_canonical(b, status);
FloatParts pr = addsub_floats(pa, pb, false, status);
return float32_round_pack_canonical(pr, status);
}
float64 QEMU_FLATTEN float64_add(float64 a, float64 b,
float_status *status)
{
FloatParts pa = float64_unpack_canonical(a, status);
FloatParts pb = float64_unpack_canonical(b, status);
FloatParts pr = addsub_floats(pa, pb, false, status);
return float64_round_pack_canonical(pr, status);
}
float16 QEMU_FLATTEN float16_sub(float16 a, float16 b,
float_status *status)
{
FloatParts pa = float16_unpack_canonical(a, status);
FloatParts pb = float16_unpack_canonical(b, status);
FloatParts pr = addsub_floats(pa, pb, true, status);
return float16_round_pack_canonical(pr, status);
}
float32 QEMU_FLATTEN float32_sub(float32 a, float32 b,
float_status *status)
{
FloatParts pa = float32_unpack_canonical(a, status);
FloatParts pb = float32_unpack_canonical(b, status);
FloatParts pr = addsub_floats(pa, pb, true, status);
return float32_round_pack_canonical(pr, status);
}
float64 QEMU_FLATTEN float64_sub(float64 a, float64 b,
float_status *status)
{
FloatParts pa = float64_unpack_canonical(a, status);
FloatParts pb = float64_unpack_canonical(b, status);
FloatParts pr = addsub_floats(pa, pb, true, status);
return float64_round_pack_canonical(pr, status);
}
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the

View file

@ -58,6 +58,9 @@ static union MSVC_FLOAT_HACK __NAN = {{0x00, 0x00, 0xC0, 0x7F}};
#define QEMU_ALIGNED(A, B) __declspec(align(A)) B
// Unicorn: Initially added to abstract away GCC's flatten attribute in softfloat.c
#define QEMU_FLATTEN
// Unicorn: Addition for thread-local variables
#define QEMU_THREAD_LOCAL_VAR __declspec(thread)
@ -123,6 +126,9 @@ static union MSVC_FLOAT_HACK __NAN = {{0x00, 0x00, 0xC0, 0x7F}};
#define QEMU_ALIGNED(A, B) B __attribute__((aligned(A)))
// Unicorn: Initially added to abstract away GCC's flatten attribute in softfloat.c
#define QEMU_FLATTEN __attribute__((flatten))
// Unicorn: Addition for thread-local variables
#define QEMU_THREAD_LOCAL_VAR __thread