/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef CPU_ALL_H #define CPU_ALL_H #include "qemu-common.h" #include "exec/cpu-common.h" #include "exec/memory.h" #include "qemu/thread.h" #include "qom/cpu.h" #define EXCP_INTERRUPT 0x10000 /* async interruption */ #define EXCP_HLT 0x10001 /* hlt instruction reached */ #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ /* some important defines: * * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * TARGET_WORDS_BIGENDIAN : same for target cpu */ #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED #endif #ifdef BSWAP_NEEDED static inline uint16_t tswap16(uint16_t s) { return bswap16(s); } static inline uint32_t tswap32(uint32_t s) { return bswap32(s); } static inline uint64_t tswap64(uint64_t s) { return bswap64(s); } static inline void tswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void tswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void tswap64s(uint64_t *s) { *s = bswap64(*s); } #else static inline uint16_t tswap16(uint16_t s) { return s; } static inline uint32_t tswap32(uint32_t s) { return s; } static inline uint64_t tswap64(uint64_t s) { return s; } static inline void tswap16s(uint16_t *s) { } static inline void tswap32s(uint32_t *s) { } static inline void tswap64s(uint64_t *s) { } #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define tswapls(s) tswap32s((uint32_t *)(s)) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define tswapls(s) tswap64s((uint64_t *)(s)) #define bswaptls(s) bswap64s(s) #endif /* CPU memory access without any memory or io remapping */ /* * the generic syntax for the memory accesses is: * * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) * * store: st{type}{size}{endian}_{access_type}(ptr, val) * * type is: * (empty): integer access * f : float access * * sign is: * (empty): for floats or 32 bit size * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * endian is: * (empty): target cpu endianness or 8 bit access * r : reversed target cpu endianness (not implemented yet) * be : big endian (not implemented yet) * le : little endian (not implemented yet) * * access_type is: * raw : host memory access * user : user mode access using soft MMU * kernel : kernel mode access using soft MMU */ /* target-endianness CPU memory access functions */ #if defined(TARGET_WORDS_BIGENDIAN) #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define ldfl_p(p) ldfl_be_p(p) #define ldfq_p(p) ldfq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define stfl_p(p, v) stfl_be_p(p, v) #define stfq_p(p, v) stfq_be_p(p, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define ldfl_p(p) ldfl_le_p(p) #define ldfq_p(p) ldfq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define stfl_p(p, v) stfl_le_p(p, v) #define stfq_p(p, v) stfq_le_p(p, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) #include #include "exec/user/abitypes.h" /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ #if defined(CONFIG_USE_GUEST_BASE) extern unsigned long guest_base; extern int have_guest_base; extern unsigned long reserved_va; #define GUEST_BASE guest_base #define RESERVED_VA reserved_va #else #define GUEST_BASE 0ul #define RESERVED_VA 0ul #endif #define GUEST_ADDR_MAX (RESERVED_VA ? RESERVED_VA : \ (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1) #else #include "exec/hwaddr.h" uint32_t lduw_phys(AddressSpace *as, hwaddr addr); uint32_t ldl_phys(AddressSpace *as, hwaddr addr); uint64_t ldq_phys(AddressSpace *as, hwaddr addr); void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val); void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val); void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val); uint32_t address_space_lduw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint32_t address_space_ldl(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); uint64_t address_space_ldq(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, MemTxResult *result); void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result); void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val, MemTxAttrs attrs, MemTxResult *result); #endif /* page related stuff */ #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) #define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \ qemu_real_host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) /* FIXME: Code that sets/uses this is broken and needs to go away. */ #define PAGE_RESERVED 0x0020 #endif #if defined(CONFIG_USER_ONLY) //void page_dump(FILE *f); int page_get_flags(target_ulong address); #endif CPUArchState *cpu_copy(CPUArchState *env); /* Flags for use in ENV->INTERRUPT_PENDING. The numbers assigned here are non-sequential in order to preserve binary compatibility with the vmstate dump. Bit 0 (0x0001) was previously used for CPU_INTERRUPT_EXIT, and is cleared when loading the vmstate dump. */ /* External hardware interrupt pending. This is typically used for interrupts from devices. */ #define CPU_INTERRUPT_HARD 0x0002 /* Exit the current TB. This is typically used when some system-level device makes some change to the memory mapping. E.g. the a20 line change. */ #define CPU_INTERRUPT_EXITTB 0x0004 /* Halt the CPU. */ #define CPU_INTERRUPT_HALT 0x0020 /* Debug event pending. */ #define CPU_INTERRUPT_DEBUG 0x0080 /* Reset signal. */ #define CPU_INTERRUPT_RESET 0x0400 /* Several target-specific external hardware interrupts. Each target/cpu.h should define proper names based on these defines. */ #define CPU_INTERRUPT_TGT_EXT_0 0x0008 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 /* Several target-specific internal interrupts. These differ from the preceding target-specific interrupts in that they are intended to originate from within the cpu itself, typically in response to some instruction being executed. These, therefore, are not masked while single-stepping within the debugger. */ #define CPU_INTERRUPT_TGT_INT_0 0x0100 #define CPU_INTERRUPT_TGT_INT_1 0x0800 #define CPU_INTERRUPT_TGT_INT_2 0x2000 /* First unused bit: 0x4000. */ /* The set of all bits that should be masked when single-stepping. */ #define CPU_INTERRUPT_SSTEP_MASK \ (CPU_INTERRUPT_HARD \ | CPU_INTERRUPT_TGT_EXT_0 \ | CPU_INTERRUPT_TGT_EXT_1 \ | CPU_INTERRUPT_TGT_EXT_2 \ | CPU_INTERRUPT_TGT_EXT_3 \ | CPU_INTERRUPT_TGT_EXT_4) #if !defined(CONFIG_USER_ONLY) /* memory API */ /* Flags stored in the low bits of the TLB virtual address. These are defined so that fast path ram access is all zeros. */ /* Zero if TLB entry is valid. */ #define TLB_INVALID_MASK (1 << 3) /* Set if TLB entry references a clean RAM page. The iotlb entry will contain the page physical address. */ #define TLB_NOTDIRTY (1 << 4) /* Set if TLB entry is an IO callback. */ #define TLB_MMIO (1 << 5) ram_addr_t last_ram_offset(struct uc_struct *uc); void qemu_mutex_lock_ramlist(struct uc_struct *uc); void qemu_mutex_unlock_ramlist(struct uc_struct *uc); #endif /* !CONFIG_USER_ONLY */ int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, uint8_t *buf, int len, int is_write); #endif /* CPU_ALL_H */