#ifndef TARGET_ARM_TRANSLATE_H #define TARGET_ARM_TRANSLATE_H #include "exec/translator.h" /* internal defines */ typedef struct DisasContext { DisasContextBase base; target_ulong pc; target_ulong next_page_start; uint32_t insn; /* Nonzero if this instruction has been conditionally skipped. */ int condjmp; /* The label that will be jumped to when the instruction is skipped. */ TCGLabel *condlabel; /* Thumb-2 conditional execution bits. */ int condexec_mask; int condexec_cond; int thumb; int sctlr_b; TCGMemOp be_data; #if !defined(CONFIG_USER_ONLY) int user; #endif ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ bool tbi0; /* TBI0 for EL0/1 or TBI for EL2/3 */ bool tbi1; /* TBI1 for EL0/1, not used for EL2/3 */ bool ns; /* Use non-secure CPREG bank on access */ int fp_excp_el; /* FP exception EL or 0 if enabled */ /* Flag indicating that exceptions from secure mode are routed to EL3. */ bool secure_routed_to_el3; bool vfp_enabled; /* FP enabled via FPSCR.EN */ int vec_len; int vec_stride; bool v7m_handler_mode; bool v8m_secure; /* true if v8M and we're in Secure mode */ /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI * so that top level loop can generate correct syndrome information. */ uint32_t svc_imm; int aarch64; int current_el; GHashTable *cp_regs; uint64_t features; /* CPU features bits */ /* Because unallocated encodings generate different exception syndrome * information from traps due to FP being disabled, we can't do a single * "is fp access disabled" check at a high level in the decode tree. * To help in catching bugs where the access check was forgotten in some * code path, we set this flag when the access check is done, and assert * that it is set at the point where we actually touch the FP regs. */ bool fp_access_checked; /* ARMv8 single-step state (this is distinct from the QEMU gdbstub * single-step support). */ bool ss_active; bool pstate_ss; /* True if the insn just emitted was a load-exclusive instruction * (necessary for syndrome information for single step exceptions), * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. */ bool is_ldex; /* True if a single-step exception will be taken to the current EL */ bool ss_same_el; /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ int c15_cpar; /* TCG op of the current insn_start. */ TCGOp *insn_start; #define TMP_A64_MAX 16 int tmp_a64_count; TCGv_i64 tmp_a64[TMP_A64_MAX]; // Unicorn engine struct uc_struct *uc; } DisasContext; typedef struct DisasCompare { TCGCond cond; TCGv_i32 value; bool value_global; } DisasCompare; static inline int arm_dc_feature(DisasContext *dc, int feature) { return (dc->features & (1ULL << feature)) != 0; } static inline int get_mem_index(DisasContext *s) { return arm_to_core_mmu_idx(s->mmu_idx); } /* Function used to determine the target exception EL when otherwise not known * or default. */ static inline int default_exception_el(DisasContext *s) { /* If we are coming from secure EL0 in a system with a 32-bit EL3, then * there is no secure EL1, so we route exceptions to EL3. Otherwise, * exceptions can only be routed to ELs above 1, so we target the higher of * 1 or the current EL. */ return (s->mmu_idx == ARMMMUIdx_S1SE0 && s->secure_routed_to_el3) ? 3 : MAX(1, s->current_el); } static void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) { /* We don't need to save all of the syndrome so we mask and shift * out unneeded bits to help the sleb128 encoder do a better job. */ syn &= ARM_INSN_START_WORD2_MASK; syn >>= ARM_INSN_START_WORD2_SHIFT; /* We check and clear insn_start_idx to catch multiple updates. */ assert(s->insn_start != NULL); tcg_set_insn_param(s->insn_start, 2, syn); s->insn_start = NULL; } /* target-specific extra values for is_jmp */ /* is_jmp field values */ #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ #define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */ /* These instructions trap after executing, so the A32/T32 decoder must * defer them until after the conditional execution state has been updated. * WFI also needs special handling when single-stepping. */ #define DISAS_WFI DISAS_TARGET_2 #define DISAS_SWI DISAS_TARGET_3 /* WFE */ #define DISAS_WFE DISAS_TARGET_4 #define DISAS_HVC DISAS_TARGET_5 #define DISAS_SMC DISAS_TARGET_6 #define DISAS_YIELD DISAS_TARGET_7 /* M profile branch which might be an exception return (and so needs * custom end-of-TB code) */ #define DISAS_BX_EXCRET DISAS_TARGET_8 /* For instructions which want an immediate exit to the main loop, * as opposed to attempting to use lookup_and_goto_ptr. Unlike * DISAS_UPDATE this doesn't write the PC on exiting the translation * loop so you need to ensure something (gen_a64_set_pc_im or runtime * helper) has done so before we reach return from cpu_tb_exec. */ #define DISAS_EXIT DISAS_TARGET_9 #ifdef TARGET_AARCH64 void a64_translate_init(struct uc_struct *uc); void gen_a64_set_pc_im(DisasContext *s, uint64_t val); extern const TranslatorOps aarch64_translator_ops; #else static inline void a64_translate_init(struct uc_struct *uc) { } static inline void gen_a64_set_pc_im(DisasContext *s, uint64_t val) { } #endif void arm_test_cc(TCGContext *tcg_ctx, DisasCompare *cmp, int cc); void arm_free_cc(TCGContext *tcg_ctx, DisasCompare *cmp); void arm_jump_cc(TCGContext *tcg_ctx, DisasCompare *cmp, TCGLabel *label); void arm_gen_test_cc(TCGContext *tcg_ctx, int cc, TCGLabel *label); #endif /* TARGET_ARM_TRANSLATE_H */