/* Java bindings for the Unicorn Emulator Engine Copyright(c) 2015 Chris Eagle This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Unicorn Emulator Engine */ /* By Loi Anh Tuan, 2015 */ /* Sample code to demonstrate how to emulate m68k code */ import unicorn.*; public class Sample_m68k { // code to be emulated public static final byte[] M68K_CODE = {118,-19}; // movq #-19, %d3 // memory address where emulation starts public static final int ADDRESS = 0x10000; public static final long toInt(byte val[]) { long res = 0; for (int i = 0; i < val.length; i++) { long v = val[i] & 0xff; res = res + (v << (i * 8)); } return res; } public static final byte[] toBytes(long val) { byte[] res = new byte[8]; for (int i = 0; i < 8; i++) { res[i] = (byte)(val & 0xff); val >>>= 8; } return res; } // callback for tracing basic blocks private static class MyBlockHook implements BlockHook { public void hook(Unicorn u, long address, int size, Object user_data) { System.out.print(String.format(">>> Tracing basic block at 0x%x, block size = 0x%x\n", address, size)); } } // callback for tracing instruction private static class MyCodeHook implements CodeHook { public void hook(Unicorn u, long address, int size, Object user_data) { System.out.print(String.format(">>> Tracing instruction at 0x%x, instruction size = 0x%x\n", address, size)); } } static void test_m68k() { byte[] d0 = toBytes(0x0000); // d0 data register byte[] d1 = toBytes(0x0000); // d1 data register byte[] d2 = toBytes(0x0000); // d2 data register byte[] d3 = toBytes(0x0000); // d3 data register byte[] d4 = toBytes(0x0000); // d4 data register byte[] d5 = toBytes(0x0000); // d5 data register byte[] d6 = toBytes(0x0000); // d6 data register byte[] d7 = toBytes(0x0000); // d7 data register byte[] a0 = toBytes(0x0000); // a0 address register byte[] a1 = toBytes(0x0000); // a1 address register byte[] a2 = toBytes(0x0000); // a2 address register byte[] a3 = toBytes(0x0000); // a3 address register byte[] a4 = toBytes(0x0000); // a4 address register byte[] a5 = toBytes(0x0000); // a5 address register byte[] a6 = toBytes(0x0000); // a6 address register byte[] a7 = toBytes(0x0000); // a6 address register byte[] pc = toBytes(0x0000); // program counter byte[] sr = toBytes(0x0000); // status register System.out.print("Emulate M68K code\n"); // Initialize emulator in M68K mode Unicorn u = new Unicorn(Unicorn.UC_ARCH_M68K, Unicorn.UC_MODE_BIG_ENDIAN); // map 2MB memory for this emulation u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL); // write machine code to be emulated to memory u.mem_write(ADDRESS, M68K_CODE); // initialize machine registers u.reg_write(Unicorn.UC_M68K_REG_D0, d0); u.reg_write(Unicorn.UC_M68K_REG_D1, d1); u.reg_write(Unicorn.UC_M68K_REG_D2, d2); u.reg_write(Unicorn.UC_M68K_REG_D3, d3); u.reg_write(Unicorn.UC_M68K_REG_D4, d4); u.reg_write(Unicorn.UC_M68K_REG_D5, d5); u.reg_write(Unicorn.UC_M68K_REG_D6, d6); u.reg_write(Unicorn.UC_M68K_REG_D7, d7); u.reg_write(Unicorn.UC_M68K_REG_A0, a0); u.reg_write(Unicorn.UC_M68K_REG_A1, a1); u.reg_write(Unicorn.UC_M68K_REG_A2, a2); u.reg_write(Unicorn.UC_M68K_REG_A3, a3); u.reg_write(Unicorn.UC_M68K_REG_A4, a4); u.reg_write(Unicorn.UC_M68K_REG_A5, a5); u.reg_write(Unicorn.UC_M68K_REG_A6, a6); u.reg_write(Unicorn.UC_M68K_REG_A7, a7); u.reg_write(Unicorn.UC_M68K_REG_PC, pc); u.reg_write(Unicorn.UC_M68K_REG_SR, sr); // tracing all basic blocks with customized callback u.hook_add(new MyBlockHook(), 1, 0, null); // tracing all instruction u.hook_add(new MyCodeHook(), 1, 0, null); // emulate machine code in infinite time (last param = 0), or when // finishing all the code. u.emu_start(ADDRESS, ADDRESS + M68K_CODE.length, 0, 0); // now print out some registers System.out.print(">>> Emulation done. Below is the CPU context\n"); d0 = u.reg_read(Unicorn.UC_M68K_REG_D0, 4); d1 = u.reg_read(Unicorn.UC_M68K_REG_D1, 4); d2 = u.reg_read(Unicorn.UC_M68K_REG_D2, 4); d3 = u.reg_read(Unicorn.UC_M68K_REG_D3, 4); d4 = u.reg_read(Unicorn.UC_M68K_REG_D4, 4); d5 = u.reg_read(Unicorn.UC_M68K_REG_D5, 4); d6 = u.reg_read(Unicorn.UC_M68K_REG_D6, 4); d7 = u.reg_read(Unicorn.UC_M68K_REG_D7, 4); a0 = u.reg_read(Unicorn.UC_M68K_REG_A0, 4); a1 = u.reg_read(Unicorn.UC_M68K_REG_A1, 4); a2 = u.reg_read(Unicorn.UC_M68K_REG_A2, 4); a3 = u.reg_read(Unicorn.UC_M68K_REG_A3, 4); a4 = u.reg_read(Unicorn.UC_M68K_REG_A4, 4); a5 = u.reg_read(Unicorn.UC_M68K_REG_A5, 4); a6 = u.reg_read(Unicorn.UC_M68K_REG_A6, 4); a7 = u.reg_read(Unicorn.UC_M68K_REG_A7, 4); pc = u.reg_read(Unicorn.UC_M68K_REG_PC, 4); sr = u.reg_read(Unicorn.UC_M68K_REG_SR, 4); System.out.print(String.format(">>> A0 = 0x%x\t\t>>> D0 = 0x%x\n", toInt(a0), toInt(d0))); System.out.print(String.format(">>> A1 = 0x%x\t\t>>> D1 = 0x%x\n", toInt(a1), toInt(d1))); System.out.print(String.format(">>> A2 = 0x%x\t\t>>> D2 = 0x%x\n", toInt(a2), toInt(d2))); System.out.print(String.format(">>> A3 = 0x%x\t\t>>> D3 = 0x%x\n", toInt(a3), toInt(d3))); System.out.print(String.format(">>> A4 = 0x%x\t\t>>> D4 = 0x%x\n", toInt(a4), toInt(d4))); System.out.print(String.format(">>> A5 = 0x%x\t\t>>> D5 = 0x%x\n", toInt(a5), toInt(d5))); System.out.print(String.format(">>> A6 = 0x%x\t\t>>> D6 = 0x%x\n", toInt(a6), toInt(d6))); System.out.print(String.format(">>> A7 = 0x%x\t\t>>> D7 = 0x%x\n", toInt(a7), toInt(d7))); System.out.print(String.format(">>> PC = 0x%x\n", toInt(pc))); System.out.print(String.format(">>> SR = 0x%x\n", toInt(sr))); u.close(); } public static void main(String args[]) { test_m68k(); } }