/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ #include "hw/boards.h" #include "hw/mips/mips.h" #include "sysemu/cpus.h" #include "unicorn.h" #include "cpu.h" #include "unicorn_common.h" #include "uc_priv.h" // prevent the lines from being compiled twice #ifdef TARGET_WORDS_BIGENDIAN #ifdef TARGET_MIPS64 const int MIPS64_REGS_STORAGE_SIZE = offsetof(CPUMIPSState, tlb_table); #else // MIPS32 const int MIPS_REGS_STORAGE_SIZE = offsetof(CPUMIPSState, tlb_table); #endif #endif static uint64_t mips_mem_redirect(uint64_t address) { // kseg0 range masks off high address bit if (address >= 0x80000000 && address <= 0x9fffffff) return address & 0x7fffffff; // kseg1 range masks off top 3 address bits if (address >= 0xa0000000 && address <= 0xbfffffff) { return address & 0x1fffffff; } // no redirect return address; } static void mips_set_pc(struct uc_struct *uc, uint64_t address) { ((CPUMIPSState *)uc->current_cpu->env_ptr)->active_tc.PC = address; } void mips_release(void *ctx); void mips_release(void *ctx) { int i; TCGContext *tcg_ctx = (TCGContext *) ctx; release_common(ctx); MIPSCPU* cpu = MIPS_CPU(tcg_ctx->uc, tcg_ctx->uc->cpu); free(cpu->env.tlb); free(cpu->env.mvp); for (i = 0; i < MIPS_DSP_ACC; i++) { free(tcg_ctx->cpu_HI[i]); free(tcg_ctx->cpu_LO[i]); } for (i = 0; i < 32; i++) { free(tcg_ctx->cpu_gpr[i]); } free(tcg_ctx->cpu_PC); free(tcg_ctx->btarget); free(tcg_ctx->bcond); free(tcg_ctx->cpu_dspctrl); free(tcg_ctx->tb_ctx.tbs); } void mips_reg_reset(struct uc_struct *uc) { (void)uc; CPUArchState *env = uc->cpu->env_ptr; memset(env->active_tc.gpr, 0, sizeof(env->active_tc.gpr)); env->active_tc.PC = 0; } int mips_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; if (regid >= UC_MIPS_REG_0 && regid <= UC_MIPS_REG_31) *(int32_t *)value = MIPS_CPU(uc, mycpu)->env.active_tc.gpr[regid - UC_MIPS_REG_0]; else { switch(regid) { default: break; case UC_MIPS_REG_PC: *(int32_t *)value = MIPS_CPU(uc, mycpu)->env.active_tc.PC; break; } } } return 0; } int mips_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals, int count) { CPUState *mycpu = uc->cpu; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; if (regid >= UC_MIPS_REG_0 && regid <= UC_MIPS_REG_31) MIPS_CPU(uc, mycpu)->env.active_tc.gpr[regid - UC_MIPS_REG_0] = *(uint32_t *)value; else { switch(regid) { default: break; case UC_MIPS_REG_PC: MIPS_CPU(uc, mycpu)->env.active_tc.PC = *(uint32_t *)value; // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); break; } } } return 0; } __attribute__ ((visibility ("default"))) #ifdef TARGET_MIPS64 #ifdef TARGET_WORDS_BIGENDIAN void mips64_uc_init(struct uc_struct* uc) #else void mips64el_uc_init(struct uc_struct* uc) #endif #else // if TARGET_MIPS #ifdef TARGET_WORDS_BIGENDIAN void mips_uc_init(struct uc_struct* uc) #else void mipsel_uc_init(struct uc_struct* uc) #endif #endif { register_accel_types(uc); mips_cpu_register_types(uc); mips_machine_init(uc); uc->reg_read = mips_reg_read; uc->reg_write = mips_reg_write; uc->reg_reset = mips_reg_reset; uc->release = mips_release; uc->set_pc = mips_set_pc; uc->mem_redirect = mips_mem_redirect; uc_common_init(uc); }