#include #include #include #include #include #define X86_CODE32 "\x33\xD2\x8A\xD4\x8B\xC8\x81\xE1\xFF\x00\x00\x00" // XOR edx,edx; MOV dl,ah; MOV ecx,eax; AND ecx,FF #define ADDRESS 0x1000000 #define PAGE_8K (1 << 13) #define PAGE_4K (1 << 12) #define TARGET_PAGE_MASK ~(PAGE_4K - 1) #define TARGET_PAGE_PREPARE(addr) (((addr) + PAGE_4K - 1) & TARGET_PAGE_MASK) #define TARGET_PAGE_ALIGN(addr) (addr - (TARGET_PAGE_PREPARE(addr) - addr) & TARGET_PAGE_MASK) static uint64_t instructions = 0; static void hook_ins(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { instructions++; } static bool hook_invalid_mem(uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value, void *user_data) { uc_err err; uint64_t address_align = TARGET_PAGE_ALIGN(address); if(address == 0) { printf("Address is 0, proof 0x%" PRIx64 "\n", address); return false; } switch(type) { default: return false; break; case UC_MEM_WRITE_UNMAPPED: printf("Mapping write address 0x%" PRIx64 " to aligned 0x%" PRIx64 "\n", address, address_align); err = uc_mem_map(uc, address_align, PAGE_8K, UC_PROT_ALL); if(err != UC_ERR_OK) { printf("Failed to map memory on UC_MEM_WRITE_UNMAPPED %s\n", uc_strerror(err)); return false; } return true; break; case UC_MEM_READ_UNMAPPED: printf("Mapping read address 0x%" PRIx64 " to aligned 0x%" PRIx64 "\n", address, address_align); err = uc_mem_map(uc, address_align, PAGE_8K, UC_PROT_ALL); if(err != UC_ERR_OK) { printf("Failed to map memory on UC_MEM_READ_UNMAPPED %s\n", uc_strerror(err)); return false; } return true; break; } } static void VM_exec() { uc_engine *uc; uc_err err; uint32_t tmp; uc_hook trace1, trace2; unsigned int r_eax, r_ebx, r_ecx, r_edx, r_ebp, r_esp, r_esi, r_edi, r_eip, eflags; unsigned int tr_eax, tr_ebx, tr_ecx, tr_edx, tr_ebp, tr_esp, tr_esi, tr_edi, tr_eip, t_eflags; r_eax = tr_eax = 0x1DB10106; r_ebx = tr_ebx = 0x7EFDE000; r_ecx = tr_ecx = 0x7EFDE000; r_edx = tr_edx = 0x00001DB1; r_ebp = tr_ebp = 0x0018FF88; r_esp = tr_esp = 0x0018FF14; r_esi = tr_esi = 0x0; r_edi = tr_edi = 0x0; r_eip = tr_eip = 0x004939F3; t_eflags = eflags = 0x00000206; // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if(err) { printf("Failed on uc_open() with error returned: %s", uc_strerror(err)); return; } err = uc_mem_map(uc, ADDRESS, (4 * 1024 * 1024), UC_PROT_ALL); if(err != UC_ERR_OK) { printf("Failed to map memory %s", uc_strerror(err)); return; } // write machine code to be emulated to memory err = uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1); if(err != UC_ERR_OK) { printf("Failed to write emulation code to memory, quit!: %s(len %zu)", uc_strerror(err), sizeof(X86_CODE32) - 1); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_EAX, &r_eax); uc_reg_write(uc, UC_X86_REG_EBX, &r_ebx); uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_write(uc, UC_X86_REG_EDX, &r_edx); uc_reg_write(uc, UC_X86_REG_EBP, &r_ebp); uc_reg_write(uc, UC_X86_REG_ESP, &r_esp); uc_reg_write(uc, UC_X86_REG_ESI, &r_esi); uc_reg_write(uc, UC_X86_REG_EDI, &r_edi); uc_reg_write(uc, UC_X86_REG_EFLAGS, &eflags); uc_hook_add(uc, &trace1, UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, (void *)hook_invalid_mem, NULL, 1, 0); // tracing all instruction by having @begin > @end uc_hook_add(uc, &trace2, UC_HOOK_CODE, (void *)hook_ins, NULL, 1, 0); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + (sizeof(X86_CODE32) - 1), 0, 0); if(err) { printf("Failed on uc_emu_start() with error returned %u: %s", err, uc_strerror(err)); instructions = 0; uc_close(uc); return; } uc_reg_read(uc, UC_X86_REG_EAX, &r_eax); uc_reg_read(uc, UC_X86_REG_EBX, &r_ebx); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_read(uc, UC_X86_REG_EDX, &r_edx); uc_reg_read(uc, UC_X86_REG_EBP, &r_ebp); uc_reg_read(uc, UC_X86_REG_ESP, &r_esp); uc_reg_read(uc, UC_X86_REG_ESI, &r_esi); uc_reg_read(uc, UC_X86_REG_EDI, &r_edi); uc_reg_read(uc, UC_X86_REG_EIP, &r_eip); uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags); uc_close(uc); printf(">>> Emulation done. Below is the CPU context\n"); printf(">>> EAX = 0x%08X %s\n", r_eax, (r_eax == tr_eax ? "" : "(m)")); printf(">>> EBX = 0x%08X %s\n", r_ebx, (r_ebx == tr_ebx ? "" : "(m)")); printf(">>> ECX = 0x%08X %s\n", r_ecx, (r_ecx == tr_ecx ? "" : "(m)")); printf(">>> EDX = 0x%08X %s\n", r_edx, (r_edx == tr_edx ? "" : "(m)")); printf(">>> EBP = 0x%08X %s\n", r_ebp, (r_ebp == tr_ebp ? "" : "(m)")); printf(">>> ESP = 0x%08X %s\n", r_esp, (r_esp == tr_esp ? "" : "(m)")); printf(">>> ESI = 0x%08X %s\n", r_esi, (r_esi == tr_esi ? "" : "(m)")); printf(">>> EDI = 0x%08X %s\n", r_edi, (r_edi == tr_edi ? "" : "(m)")); printf(">>> EIP = 0x%08X %s\n", (r_eip - ADDRESS) + tr_eip, (r_eip == tr_eip ? "" : "(m)\n")); printf(">>> EFLAGS = 0x%08X %s\n", eflags, (eflags == t_eflags ? "" : "(m)")); printf(">>> Instructions executed %" PRIu64 "\n", instructions); assert(r_eax == 0x1DB10106); assert(r_ebx == 0x7EFDE000); assert(r_ecx == 0x00000006); assert(r_edx == 0x00000001); assert(r_ebp == 0x0018FF88); assert(r_esp == 0x0018FF14); assert(r_esi == 0x00000000); assert(r_edi == 0x00000000); assert(eflags == 0x00000206); //we shouldn't fail this assert, eflags should be 0x00000206 because the last AND instruction produces a non-zero result. instructions = 0; } int main(int argc, char *argv[]) { VM_exec(); return 0; }