mirror of
https://github.com/yuzu-emu/unicorn
synced 2024-11-25 11:28:57 +00:00
0aecb15f3b
The MC68040 MMU provides the size of the access that triggers the page fault. This size is set in the Special Status Word which is written in the stack frame of the access fault exception. So we need the size in m68k_cpu_unassigned_access() and m68k_cpu_handle_mmu_fault(). To be able to do that, this patch modifies the prototype of handle_mmu_fault handler, tlb_fill() and probe_write(). do_unassigned_access() already includes a size parameter. This patch also updates handle_mmu_fault handlers and tlb_fill() of all targets (only parameter, no code change). Backports commit 98670d47cd8d63a529ff230fd39ddaa186156f8c from qemu
1403 lines
41 KiB
C
1403 lines
41 KiB
C
/*
|
|
* ARM helper routines
|
|
*
|
|
* Copyright (c) 2005-2007 CodeSourcery, LLC
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "cpu.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "internals.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
|
|
#define SIGNBIT (uint32_t)0x80000000
|
|
#define SIGNBIT64 ((uint64_t)1 << 63)
|
|
|
|
static void raise_exception(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
|
|
assert(!excp_is_internal(excp));
|
|
cs->exception_index = excp;
|
|
env->exception.syndrome = syndrome;
|
|
env->exception.target_el = target_el;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
static int exception_target_el(CPUARMState *env)
|
|
{
|
|
int target_el = MAX(1, arm_current_el(env));
|
|
|
|
/* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
|
|
* to EL3 in this case.
|
|
*/
|
|
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
|
|
target_el = 3;
|
|
}
|
|
|
|
return target_el;
|
|
}
|
|
|
|
uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
|
|
uint32_t maxindex)
|
|
{
|
|
uint32_t val, shift;
|
|
uint64_t *table = vn;
|
|
|
|
val = 0;
|
|
for (shift = 0; shift < 32; shift += 8) {
|
|
uint32_t index = (ireg >> shift) & 0xff;
|
|
if (index < maxindex) {
|
|
uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
|
|
val |= tmp << shift;
|
|
} else {
|
|
val |= def & (0xff << shift);
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
|
|
unsigned int target_el,
|
|
bool same_el, bool ea,
|
|
bool s1ptw, bool is_write,
|
|
int fsc)
|
|
{
|
|
uint32_t syn;
|
|
|
|
/* ISV is only set for data aborts routed to EL2 and
|
|
* never for stage-1 page table walks faulting on stage 2.
|
|
*
|
|
* Furthermore, ISV is only set for certain kinds of load/stores.
|
|
* If the template syndrome does not have ISV set, we should leave
|
|
* it cleared.
|
|
*
|
|
* See ARMv8 specs, D7-1974:
|
|
* ISS encoding for an exception from a Data Abort, the
|
|
* ISV field.
|
|
*/
|
|
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
|
|
syn = syn_data_abort_no_iss(same_el,
|
|
ea, 0, s1ptw, is_write, fsc);
|
|
} else {
|
|
/* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
|
|
* syndrome created at translation time.
|
|
* Now we create the runtime syndrome with the remaining fields.
|
|
*/
|
|
syn = syn_data_abort_with_iss(same_el,
|
|
0, 0, 0, 0, 0,
|
|
ea, 0, s1ptw, is_write, fsc,
|
|
false);
|
|
/* Merge the runtime syndrome with the template syndrome. */
|
|
syn |= template_syn;
|
|
}
|
|
return syn;
|
|
}
|
|
|
|
static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
|
|
int mmu_idx, ARMMMUFaultInfo *fi)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
int target_el;
|
|
bool same_el;
|
|
uint32_t syn, exc, fsr, fsc;
|
|
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
|
|
|
|
target_el = exception_target_el(env);
|
|
if (fi->stage2) {
|
|
target_el = 2;
|
|
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
|
|
}
|
|
same_el = (arm_current_el(env) == target_el);
|
|
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
|
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
|
|
/* LPAE format fault status register : bottom 6 bits are
|
|
* status code in the same form as needed for syndrome
|
|
*/
|
|
fsr = arm_fi_to_lfsc(fi);
|
|
fsc = extract32(fsr, 0, 6);
|
|
} else {
|
|
fsr = arm_fi_to_sfsc(fi);
|
|
/* Short format FSR : this fault will never actually be reported
|
|
* to an EL that uses a syndrome register. Use a (currently)
|
|
* reserved FSR code in case the constructed syndrome does leak
|
|
* into the guest somehow.
|
|
*/
|
|
fsc = 0x3f;
|
|
}
|
|
|
|
if (access_type == MMU_INST_FETCH) {
|
|
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
|
|
exc = EXCP_PREFETCH_ABORT;
|
|
} else {
|
|
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
|
|
same_el, fi->ea, fi->s1ptw,
|
|
access_type == MMU_DATA_STORE,
|
|
fsc);
|
|
if (access_type == MMU_DATA_STORE
|
|
&& arm_feature(env, ARM_FEATURE_V6)) {
|
|
fsr |= (1 << 11);
|
|
}
|
|
exc = EXCP_DATA_ABORT;
|
|
}
|
|
|
|
env->exception.vaddress = addr;
|
|
env->exception.fsr = fsr;
|
|
raise_exception(env, exc, syn, target_el);
|
|
}
|
|
|
|
/* try to fill the TLB and return an exception if error. If retaddr is
|
|
* NULL, it means that the function was called in C code (i.e. not
|
|
* from generated code or from helper.c)
|
|
*/
|
|
void tlb_fill(CPUState *cs, target_ulong addr, int size,
|
|
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
bool ret;
|
|
ARMMMUFaultInfo fi = {0};
|
|
|
|
ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
|
|
if (unlikely(ret)) {
|
|
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
|
|
|
|
/* now we have a real cpu fault */
|
|
cpu_restore_state(cs, retaddr);
|
|
|
|
deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
|
}
|
|
}
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
|
|
ARMMMUFaultInfo fi = {0};
|
|
|
|
/* now we have a real cpu fault */
|
|
cpu_restore_state(cs, retaddr);
|
|
|
|
fi.type = ARMFault_Alignment;
|
|
deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
|
|
}
|
|
|
|
/* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
* exception
|
|
*/
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
|
|
ARMMMUFaultInfo fi = {};
|
|
|
|
/* now we have a real cpu fault */
|
|
cpu_restore_state(cs, retaddr);
|
|
|
|
fi.ea = arm_extabort_type(response);
|
|
|
|
fi.type = ARMFault_SyncExternal;
|
|
deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a + b;
|
|
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
|
|
env->QF = 1;
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a + b;
|
|
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
|
|
env->QF = 1;
|
|
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a - b;
|
|
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
|
|
env->QF = 1;
|
|
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
|
|
{
|
|
uint32_t res;
|
|
if (val >= 0x40000000) {
|
|
res = ~SIGNBIT;
|
|
env->QF = 1;
|
|
} else if (val <= (int32_t)0xc0000000) {
|
|
res = SIGNBIT;
|
|
env->QF = 1;
|
|
} else {
|
|
res = val << 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a + b;
|
|
if (res < a) {
|
|
env->QF = 1;
|
|
res = ~0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a - b;
|
|
if (res > a) {
|
|
env->QF = 1;
|
|
res = 0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Signed saturation. */
|
|
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
|
|
{
|
|
int32_t top;
|
|
uint32_t mask;
|
|
|
|
top = val >> shift;
|
|
mask = (1u << shift) - 1;
|
|
if (top > 0) {
|
|
env->QF = 1;
|
|
return mask;
|
|
} else if (top < -1) {
|
|
env->QF = 1;
|
|
return ~mask;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Unsigned saturation. */
|
|
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
|
|
{
|
|
uint32_t max;
|
|
|
|
max = (1u << shift) - 1;
|
|
if (val < 0) {
|
|
env->QF = 1;
|
|
return 0;
|
|
} else if (val > max) {
|
|
env->QF = 1;
|
|
return max;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Signed saturate. */
|
|
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
|
|
{
|
|
return do_ssat(env, x, shift);
|
|
}
|
|
|
|
/* Dual halfword signed saturate. */
|
|
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
|
|
{
|
|
uint32_t res;
|
|
|
|
res = (uint16_t)do_ssat(env, (int16_t)x, shift);
|
|
res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
|
|
return res;
|
|
}
|
|
|
|
/* Unsigned saturate. */
|
|
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
|
|
{
|
|
return do_usat(env, x, shift);
|
|
}
|
|
|
|
/* Dual halfword unsigned saturate. */
|
|
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
|
|
{
|
|
uint32_t res;
|
|
|
|
res = (uint16_t)do_usat(env, (int16_t)x, shift);
|
|
res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
|
|
return res;
|
|
}
|
|
|
|
void HELPER(setend)(CPUARMState *env)
|
|
{
|
|
env->uncached_cpsr ^= CPSR_E;
|
|
}
|
|
|
|
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
|
|
* The function returns the target EL (1-3) if the instruction is to be trapped;
|
|
* otherwise it returns 0 indicating it is not trapped.
|
|
*/
|
|
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
uint64_t mask;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
/* M profile cores can never trap WFI/WFE. */
|
|
return 0;
|
|
}
|
|
|
|
/* If we are currently in EL0 then we need to check if SCTLR is set up for
|
|
* WFx instructions being trapped to EL1. These trap bits don't exist in v7.
|
|
*/
|
|
if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
|
|
int target_el;
|
|
|
|
mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
|
|
if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
|
|
/* Secure EL0 and Secure PL1 is at EL3 */
|
|
target_el = 3;
|
|
} else {
|
|
target_el = 1;
|
|
}
|
|
|
|
if (!(env->cp15.sctlr_el[target_el] & mask)) {
|
|
return target_el;
|
|
}
|
|
}
|
|
|
|
/* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
|
|
* No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
|
|
* bits will be zero indicating no trap.
|
|
*/
|
|
if (cur_el < 2 && !arm_is_secure(env)) {
|
|
mask = (is_wfe) ? HCR_TWE : HCR_TWI;
|
|
if (env->cp15.hcr_el2 & mask) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
|
|
if (cur_el < 3) {
|
|
mask = (is_wfe) ? SCR_TWE : SCR_TWI;
|
|
if (env->cp15.scr_el3 & mask) {
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
int target_el = check_wfx_trap(env, false);
|
|
|
|
if (cpu_has_work(cs)) {
|
|
/* Don't bother to go into our "low power state" if
|
|
* we would just wake up immediately.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (target_el) {
|
|
env->pc -= insn_len;
|
|
raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
|
|
target_el);
|
|
}
|
|
|
|
cs->exception_index = EXCP_HLT;
|
|
cs->halted = 1;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
void HELPER(wfe)(CPUARMState *env)
|
|
{
|
|
/* This is a hint instruction that is semantically different
|
|
* from YIELD even though we currently implement it identically.
|
|
* Don't actually halt the CPU, just yield back to top
|
|
* level loop. This is not going into a "low power state"
|
|
* (ie halting until some event occurs), so we never take
|
|
* a configurable trap to a different exception level.
|
|
*/
|
|
HELPER(yield)(env);
|
|
}
|
|
|
|
void HELPER(yield)(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
/* When running in MTTCG we don't generate jumps to the yield and
|
|
* WFE helpers as it won't affect the scheduling of other vCPUs.
|
|
* If we wanted to more completely model WFE/SEV so we don't busy
|
|
* spin unnecessarily we would need to do something more involved.
|
|
*/
|
|
g_assert(!cs->uc->parallel_cpus);
|
|
|
|
/* This is a non-trappable hint instruction that generally indicates
|
|
* that the guest is currently busy-looping. Yield control back to the
|
|
* top level loop so that a more deserving VCPU has a chance to run.
|
|
*/
|
|
cs->exception_index = EXCP_YIELD;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
/* Raise an internal-to-QEMU exception. This is limited to only
|
|
* those EXCP values which are special cases for QEMU to interrupt
|
|
* execution and not to be used for exceptions which are passed to
|
|
* the guest (those must all have syndrome information and thus should
|
|
* use exception_with_syndrome).
|
|
*/
|
|
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
|
|
assert(excp_is_internal(excp));
|
|
cs->exception_index = excp;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
/* Raise an exception with the specified syndrome register value */
|
|
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el)
|
|
{
|
|
raise_exception(env, excp, syndrome, target_el);
|
|
}
|
|
|
|
uint32_t HELPER(cpsr_read)(CPUARMState *env)
|
|
{
|
|
return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
|
|
}
|
|
|
|
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
|
|
{
|
|
cpsr_write(env, val, mask, CPSRWriteByInstr);
|
|
}
|
|
|
|
/* Write the CPSR for a 32-bit exception return */
|
|
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
|
|
{
|
|
cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
|
|
|
|
/* Generated code has already stored the new PC value, but
|
|
* without masking out its low bits, because which bits need
|
|
* masking depends on whether we're returning to Thumb or ARM
|
|
* state. Do the masking now.
|
|
*/
|
|
env->regs[15] &= (env->thumb ? ~1 : ~3);
|
|
|
|
arm_call_el_change_hook(arm_env_get_cpu(env));
|
|
}
|
|
|
|
/* Access to user mode registers from privileged modes. */
|
|
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (regno == 13) {
|
|
val = env->banked_r13[BANK_USRSYS];
|
|
} else if (regno == 14) {
|
|
val = env->banked_r14[BANK_USRSYS];
|
|
} else if (regno >= 8
|
|
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
|
|
val = env->usr_regs[regno - 8];
|
|
} else {
|
|
val = env->regs[regno];
|
|
}
|
|
return val;
|
|
}
|
|
|
|
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
|
|
{
|
|
if (regno == 13) {
|
|
env->banked_r13[BANK_USRSYS] = val;
|
|
} else if (regno == 14) {
|
|
env->banked_r14[BANK_USRSYS] = val;
|
|
} else if (regno >= 8
|
|
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
|
|
env->usr_regs[regno - 8] = val;
|
|
} else {
|
|
env->regs[regno] = val;
|
|
}
|
|
}
|
|
|
|
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
|
|
{
|
|
if ((env->uncached_cpsr & CPSR_M) == mode) {
|
|
env->regs[13] = val;
|
|
} else {
|
|
env->banked_r13[bank_number(mode)] = val;
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
|
|
{
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
|
|
/* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
|
|
* Other UNPREDICTABLE and UNDEF cases were caught at translate time.
|
|
*/
|
|
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
|
|
exception_target_el(env));
|
|
}
|
|
|
|
if ((env->uncached_cpsr & CPSR_M) == mode) {
|
|
return env->regs[13];
|
|
} else {
|
|
return env->banked_r13[bank_number(mode)];
|
|
}
|
|
}
|
|
|
|
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
|
|
uint32_t regno)
|
|
{
|
|
/* Raise an exception if the requested access is one of the UNPREDICTABLE
|
|
* cases; otherwise return. This broadly corresponds to the pseudocode
|
|
* BankedRegisterAccessValid() and SPSRAccessValid(),
|
|
* except that we have already handled some cases at translate time.
|
|
*/
|
|
int curmode = env->uncached_cpsr & CPSR_M;
|
|
|
|
if (curmode == tgtmode) {
|
|
goto undef;
|
|
}
|
|
|
|
if (tgtmode == ARM_CPU_MODE_USR) {
|
|
switch (regno) {
|
|
case 8 ... 12:
|
|
if (curmode != ARM_CPU_MODE_FIQ) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
case 13:
|
|
if (curmode == ARM_CPU_MODE_SYS) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
case 14:
|
|
if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (tgtmode == ARM_CPU_MODE_HYP) {
|
|
switch (regno) {
|
|
case 17: /* ELR_Hyp */
|
|
if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
default:
|
|
if (curmode != ARM_CPU_MODE_MON) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
undef:
|
|
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
|
|
exception_target_el(env));
|
|
}
|
|
|
|
void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
|
|
uint32_t regno)
|
|
{
|
|
msr_mrs_banked_exc_checks(env, tgtmode, regno);
|
|
|
|
switch (regno) {
|
|
case 16: /* SPSRs */
|
|
env->banked_spsr[bank_number(tgtmode)] = value;
|
|
break;
|
|
case 17: /* ELR_Hyp */
|
|
env->elr_el[2] = value;
|
|
break;
|
|
case 13:
|
|
env->banked_r13[bank_number(tgtmode)] = value;
|
|
break;
|
|
case 14:
|
|
env->banked_r14[bank_number(tgtmode)] = value;
|
|
break;
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
switch (tgtmode) {
|
|
case ARM_CPU_MODE_USR:
|
|
env->usr_regs[regno - 8] = value;
|
|
break;
|
|
case ARM_CPU_MODE_FIQ:
|
|
env->fiq_regs[regno - 8] = value;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
|
|
{
|
|
msr_mrs_banked_exc_checks(env, tgtmode, regno);
|
|
|
|
switch (regno) {
|
|
case 16: /* SPSRs */
|
|
return env->banked_spsr[bank_number(tgtmode)];
|
|
case 17: /* ELR_Hyp */
|
|
return env->elr_el[2];
|
|
case 13:
|
|
return env->banked_r13[bank_number(tgtmode)];
|
|
case 14:
|
|
return env->banked_r14[bank_number(tgtmode)];
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
switch (tgtmode) {
|
|
case ARM_CPU_MODE_USR:
|
|
return env->usr_regs[regno - 8];
|
|
case ARM_CPU_MODE_FIQ:
|
|
return env->fiq_regs[regno - 8];
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
|
|
uint32_t isread)
|
|
{
|
|
const ARMCPRegInfo *ri = rip;
|
|
int target_el;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
|
|
&& extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
|
|
raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
|
|
}
|
|
|
|
if (!ri->accessfn) {
|
|
return;
|
|
}
|
|
|
|
switch (ri->accessfn(env, ri, isread)) {
|
|
case CP_ACCESS_OK:
|
|
return;
|
|
case CP_ACCESS_TRAP:
|
|
target_el = exception_target_el(env);
|
|
break;
|
|
case CP_ACCESS_TRAP_EL2:
|
|
/* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
|
|
* a bug in the access function.
|
|
*/
|
|
assert(!arm_is_secure(env) && arm_current_el(env) != 3);
|
|
target_el = 2;
|
|
break;
|
|
case CP_ACCESS_TRAP_EL3:
|
|
target_el = 3;
|
|
break;
|
|
case CP_ACCESS_TRAP_UNCATEGORIZED:
|
|
target_el = exception_target_el(env);
|
|
syndrome = syn_uncategorized();
|
|
break;
|
|
case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
|
|
target_el = 2;
|
|
syndrome = syn_uncategorized();
|
|
break;
|
|
case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
|
|
target_el = 3;
|
|
syndrome = syn_uncategorized();
|
|
break;
|
|
case CP_ACCESS_TRAP_FP_EL2:
|
|
target_el = 2;
|
|
/* Since we are an implementation that takes exceptions on a trapped
|
|
* conditional insn only if the insn has passed its condition code
|
|
* check, we take the IMPDEF choice to always report CV=1 COND=0xe
|
|
* (which is also the required value for AArch64 traps).
|
|
*/
|
|
syndrome = syn_fp_access_trap(1, 0xe, false);
|
|
break;
|
|
case CP_ACCESS_TRAP_FP_EL3:
|
|
target_el = 3;
|
|
syndrome = syn_fp_access_trap(1, 0xe, false);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
raise_exception(env, EXCP_UDEF, syndrome, target_el);
|
|
}
|
|
|
|
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
|
|
{
|
|
const ARMCPRegInfo *ri = rip;
|
|
|
|
ri->writefn(env, ri, value);
|
|
}
|
|
|
|
uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
|
|
{
|
|
const ARMCPRegInfo *ri = rip;
|
|
|
|
return ri->readfn(env, ri);
|
|
}
|
|
|
|
void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
|
|
{
|
|
const ARMCPRegInfo *ri = rip;
|
|
|
|
ri->writefn(env, ri, value);
|
|
}
|
|
|
|
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
|
|
{
|
|
const ARMCPRegInfo *ri = rip;
|
|
|
|
return ri->readfn(env, ri);
|
|
}
|
|
|
|
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
|
|
{
|
|
/* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
|
|
* Note that SPSel is never OK from EL0; we rely on handle_msr_i()
|
|
* to catch that case at translate time.
|
|
*/
|
|
if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
|
|
uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
|
|
extract32(op, 3, 3), 4,
|
|
imm, 0x1f, 0);
|
|
raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
|
|
}
|
|
|
|
switch (op) {
|
|
case 0x05: /* SPSel */
|
|
update_spsel(env, imm);
|
|
break;
|
|
case 0x1e: /* DAIFSet */
|
|
env->daif |= (imm << 6) & PSTATE_DAIF;
|
|
break;
|
|
case 0x1f: /* DAIFClear */
|
|
env->daif &= ~((imm << 6) & PSTATE_DAIF);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void HELPER(clear_pstate_ss)(CPUARMState *env)
|
|
{
|
|
env->pstate &= ~PSTATE_SS;
|
|
}
|
|
|
|
void HELPER(pre_hvc)(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int cur_el = arm_current_el(env);
|
|
/* FIXME: Use actual secure state. */
|
|
bool secure = false;
|
|
bool undef;
|
|
|
|
if (arm_is_psci_call(cpu, EXCP_HVC)) {
|
|
/* If PSCI is enabled and this looks like a valid PSCI call then
|
|
* that overrides the architecturally mandated HVC behaviour.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/* If EL2 doesn't exist, HVC always UNDEFs */
|
|
undef = true;
|
|
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/* EL3.HCE has priority over EL2.HCD. */
|
|
undef = !(env->cp15.scr_el3 & SCR_HCE);
|
|
} else {
|
|
undef = env->cp15.hcr_el2 & HCR_HCD;
|
|
}
|
|
|
|
/* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
|
|
* For ARMv8/AArch64, HVC is allowed in EL3.
|
|
* Note that we've already trapped HVC from EL0 at translation
|
|
* time.
|
|
*/
|
|
if (secure && (!is_a64(env) || cur_el == 1)) {
|
|
undef = true;
|
|
}
|
|
|
|
if (undef) {
|
|
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
|
|
exception_target_el(env));
|
|
}
|
|
}
|
|
|
|
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
bool smd = env->cp15.scr_el3 & SCR_SMD;
|
|
/* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
|
|
* On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
|
|
* extensions, SMD only applies to NS state.
|
|
* On ARMv7 without the Virtualization extensions, the SMD bit
|
|
* doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
|
|
* so we need not special case this here.
|
|
*/
|
|
bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL3) &&
|
|
cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
|
|
/* If we have no EL3 then SMC always UNDEFs and can't be
|
|
* trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
|
|
* firmware within QEMU, and we want an EL2 guest to be able
|
|
* to forbid its EL1 from making PSCI calls into QEMU's
|
|
* "firmware" via HCR.TSC, so for these purposes treat
|
|
* PSCI-via-SMC as implying an EL3.
|
|
*/
|
|
/* If we have no EL3 then SMC always UNDEFs */
|
|
undef = true;
|
|
} else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
|
|
/* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
|
|
* We also want an EL2 guest to be able to forbid its EL1 from
|
|
* making PSCI calls into QEMU's "firmware" via HCR.TSC.
|
|
*/
|
|
raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
|
|
}
|
|
|
|
/* If PSCI is enabled and this looks like a valid PSCI call then
|
|
* suppress the UNDEF -- we'll catch the SMC exception and
|
|
* implement the PSCI call behaviour there.
|
|
*/
|
|
if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
|
|
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
|
|
exception_target_el(env));
|
|
}
|
|
}
|
|
|
|
static int el_from_spsr(uint32_t spsr)
|
|
{
|
|
/* Return the exception level that this SPSR is requesting a return to,
|
|
* or -1 if it is invalid (an illegal return)
|
|
*/
|
|
if (spsr & PSTATE_nRW) {
|
|
switch (spsr & CPSR_M) {
|
|
case ARM_CPU_MODE_USR:
|
|
return 0;
|
|
case ARM_CPU_MODE_HYP:
|
|
return 2;
|
|
case ARM_CPU_MODE_FIQ:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_SYS:
|
|
return 1;
|
|
case ARM_CPU_MODE_MON:
|
|
/* Returning to Mon from AArch64 is never possible,
|
|
* so this is an illegal return.
|
|
*/
|
|
default:
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (extract32(spsr, 1, 1)) {
|
|
/* Return with reserved M[1] bit set */
|
|
return -1;
|
|
}
|
|
if (extract32(spsr, 0, 4) == 1) {
|
|
/* return to EL0 with M[0] bit set */
|
|
return -1;
|
|
}
|
|
return extract32(spsr, 2, 2);
|
|
}
|
|
}
|
|
|
|
void HELPER(exception_return)(CPUARMState *env)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
|
|
uint32_t spsr = env->banked_spsr[spsr_idx];
|
|
int new_el;
|
|
bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
|
|
|
|
aarch64_save_sp(env, cur_el);
|
|
|
|
arm_clear_exclusive(env);
|
|
|
|
/* We must squash the PSTATE.SS bit to zero unless both of the
|
|
* following hold:
|
|
* 1. debug exceptions are currently disabled
|
|
* 2. singlestep will be active in the EL we return to
|
|
* We check 1 here and 2 after we've done the pstate/cpsr write() to
|
|
* transition to the EL we're going to.
|
|
*/
|
|
if (arm_generate_debug_exceptions(env)) {
|
|
spsr &= ~PSTATE_SS;
|
|
}
|
|
|
|
new_el = el_from_spsr(spsr);
|
|
if (new_el == -1) {
|
|
goto illegal_return;
|
|
}
|
|
if (new_el > cur_el
|
|
|| (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
|
|
/* Disallow return to an EL which is unimplemented or higher
|
|
* than the current one.
|
|
*/
|
|
goto illegal_return;
|
|
}
|
|
|
|
if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
|
|
/* Return to an EL which is configured for a different register width */
|
|
goto illegal_return;
|
|
}
|
|
|
|
if (new_el == 2 && arm_is_secure_below_el3(env)) {
|
|
/* Return to the non-existent secure-EL2 */
|
|
goto illegal_return;
|
|
}
|
|
|
|
if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
|
|
&& !arm_is_secure_below_el3(env)) {
|
|
goto illegal_return;
|
|
}
|
|
|
|
if (!return_to_aa64) {
|
|
env->aarch64 = 0;
|
|
/* We do a raw CPSR write because aarch64_sync_64_to_32()
|
|
* will sort the register banks out for us, and we've already
|
|
* caught all the bad-mode cases in el_from_spsr().
|
|
*/
|
|
cpsr_write(env, spsr, ~0, CPSRWriteRaw);
|
|
if (!arm_singlestep_active(env)) {
|
|
env->uncached_cpsr &= ~PSTATE_SS;
|
|
}
|
|
aarch64_sync_64_to_32(env);
|
|
|
|
if (spsr & CPSR_T) {
|
|
env->regs[15] = env->elr_el[cur_el] & ~0x1;
|
|
} else {
|
|
env->regs[15] = env->elr_el[cur_el] & ~0x3;
|
|
}
|
|
qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
|
|
"AArch32 EL%d PC 0x%" PRIx32 "\n",
|
|
cur_el, new_el, env->regs[15]);
|
|
} else {
|
|
env->aarch64 = 1;
|
|
pstate_write(env, spsr);
|
|
if (!arm_singlestep_active(env)) {
|
|
env->pstate &= ~PSTATE_SS;
|
|
}
|
|
aarch64_restore_sp(env, new_el);
|
|
env->pc = env->elr_el[cur_el];
|
|
qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
|
|
"AArch64 EL%d PC 0x%" PRIx64 "\n",
|
|
cur_el, new_el, env->pc);
|
|
}
|
|
|
|
arm_call_el_change_hook(arm_env_get_cpu(env));
|
|
|
|
return;
|
|
|
|
illegal_return:
|
|
/* Illegal return events of various kinds have architecturally
|
|
* mandated behaviour:
|
|
* restore NZCV and DAIF from SPSR_ELx
|
|
* set PSTATE.IL
|
|
* restore PC from ELR_ELx
|
|
* no change to exception level, execution state or stack pointer
|
|
*/
|
|
env->pstate |= PSTATE_IL;
|
|
env->pc = env->elr_el[cur_el];
|
|
spsr &= PSTATE_NZCV | PSTATE_DAIF;
|
|
spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
|
|
pstate_write(env, spsr);
|
|
if (!arm_singlestep_active(env)) {
|
|
env->pstate &= ~PSTATE_SS;
|
|
}
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
|
|
"resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
|
|
}
|
|
|
|
/* Return true if the linked breakpoint entry lbn passes its checks */
|
|
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t bcr = env->cp15.dbgbcr[lbn];
|
|
int brps = extract32(cpu->dbgdidr, 24, 4);
|
|
int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
|
|
int bt;
|
|
uint32_t contextidr;
|
|
|
|
/* Links to unimplemented or non-context aware breakpoints are
|
|
* CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
|
|
* as if linked to an UNKNOWN context-aware breakpoint (in which
|
|
* case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
|
|
* We choose the former.
|
|
*/
|
|
if (lbn > brps || lbn < (brps - ctx_cmps)) {
|
|
return false;
|
|
}
|
|
|
|
bcr = env->cp15.dbgbcr[lbn];
|
|
|
|
if (extract64(bcr, 0, 1) == 0) {
|
|
/* Linked breakpoint disabled : generate no events */
|
|
return false;
|
|
}
|
|
|
|
bt = extract64(bcr, 20, 4);
|
|
|
|
/* We match the whole register even if this is AArch32 using the
|
|
* short descriptor format (in which case it holds both PROCID and ASID),
|
|
* since we don't implement the optional v7 context ID masking.
|
|
*/
|
|
contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
|
|
|
|
switch (bt) {
|
|
case 3: /* linked context ID match */
|
|
if (arm_current_el(env) > 1) {
|
|
/* Context matches never fire in EL2 or (AArch64) EL3 */
|
|
return false;
|
|
}
|
|
return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
|
|
case 5: /* linked address mismatch (reserved in AArch64) */
|
|
case 9: /* linked VMID match (reserved if no EL2) */
|
|
case 11: /* linked context ID and VMID match (reserved if no EL2) */
|
|
default:
|
|
/* Links to Unlinked context breakpoints must generate no
|
|
* events; we choose to do the same for reserved values too.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t cr;
|
|
int pac, hmc, ssc, wt, lbn;
|
|
/* TODO: check against CPU security state when we implement TrustZone */
|
|
bool is_secure = false;
|
|
|
|
if (is_wp) {
|
|
if (!env->cpu_watchpoint[n]
|
|
|| !(env->cpu_watchpoint[n]->flags & BP_WATCHPOINT_HIT)) {
|
|
return false;
|
|
}
|
|
cr = env->cp15.dbgwcr[n];
|
|
} else {
|
|
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
|
|
|
|
if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
|
|
return false;
|
|
}
|
|
cr = env->cp15.dbgbcr[n];
|
|
}
|
|
/* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
|
|
* enabled and that the address and access type match; for breakpoints
|
|
* we know the address matched; check the remaining fields, including
|
|
* linked breakpoints. We rely on WCR and BCR having the same layout
|
|
* for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
|
|
* Note that some combinations of {PAC, HMC, SSC} are reserved and
|
|
* must act either like some valid combination or as if the watchpoint
|
|
* were disabled. We choose the former, and use this together with
|
|
* the fact that EL3 must always be Secure and EL2 must always be
|
|
* Non-Secure to simplify the code slightly compared to the full
|
|
* table in the ARM ARM.
|
|
*/
|
|
pac = extract64(cr, 1, 2);
|
|
hmc = extract64(cr, 13, 1);
|
|
ssc = extract64(cr, 14, 2);
|
|
|
|
switch (ssc) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
case 3:
|
|
if (is_secure) {
|
|
return false;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (!is_secure) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* TODO: this is not strictly correct because the LDRT/STRT/LDT/STT
|
|
* "unprivileged access" instructions should match watchpoints as if
|
|
* they were accesses done at EL0, even if the CPU is at EL1 or higher.
|
|
* Implementing this would require reworking the core watchpoint code
|
|
* to plumb the mmu_idx through to this point. Luckily Linux does not
|
|
* rely on this behaviour currently.
|
|
* For breakpoints we do want to use the current CPU state.
|
|
*/
|
|
switch (arm_current_el(env)) {
|
|
case 3:
|
|
case 2:
|
|
if (!hmc) {
|
|
return false;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (extract32(pac, 0, 1) == 0) {
|
|
return false;
|
|
}
|
|
break;
|
|
case 0:
|
|
if (extract32(pac, 1, 1) == 0) {
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
wt = extract64(cr, 20, 1);
|
|
lbn = extract64(cr, 16, 4);
|
|
|
|
if (wt && !linked_bp_matches(cpu, lbn)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool check_watchpoints(ARMCPU *cpu)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
int n;
|
|
|
|
/* If watchpoints are disabled globally or we can't take debug
|
|
* exceptions here then watchpoint firings are ignored.
|
|
*/
|
|
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|
|
|| !arm_generate_debug_exceptions(env)) {
|
|
return false;
|
|
}
|
|
|
|
for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
|
|
if (bp_wp_matches(cpu, n, true)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool check_breakpoints(ARMCPU *cpu)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
int n;
|
|
|
|
/* If breakpoints are disabled globally or we can't take debug
|
|
* exceptions here then breakpoint firings are ignored.
|
|
*/
|
|
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|
|
|| !arm_generate_debug_exceptions(env)) {
|
|
return false;
|
|
}
|
|
|
|
for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
|
|
if (bp_wp_matches(cpu, n, false)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void HELPER(check_breakpoints)(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
if (check_breakpoints(cpu)) {
|
|
HELPER(exception_internal(env, EXCP_DEBUG));
|
|
}
|
|
}
|
|
|
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
|
|
{
|
|
/* Called by core code when a CPU watchpoint fires; need to check if this
|
|
* is also an architectural watchpoint match.
|
|
*/
|
|
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
|
|
|
|
return check_watchpoints(cpu);
|
|
}
|
|
|
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
/* In BE32 system mode, target memory is stored byteswapped (on a
|
|
* little-endian host system), and by the time we reach here (via an
|
|
* opcode helper) the addresses of subword accesses have been adjusted
|
|
* to account for that, which means that watchpoints will not match.
|
|
* Undo the adjustment here.
|
|
*/
|
|
if (arm_sctlr_b(env)) {
|
|
if (len == 1) {
|
|
addr ^= 3;
|
|
} else if (len == 2) {
|
|
addr ^= 2;
|
|
}
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
void arm_debug_excp_handler(CPUState *cs)
|
|
{
|
|
/* Called by core code when a watchpoint or breakpoint fires;
|
|
* need to check which one and raise the appropriate exception.
|
|
*/
|
|
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
|
|
CPUARMState *env = &cpu->env;
|
|
CPUWatchpoint *wp_hit = cs->watchpoint_hit;
|
|
|
|
if (wp_hit) {
|
|
if (wp_hit->flags & BP_CPU) {
|
|
bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
|
|
bool same_el = arm_debug_target_el(env) == arm_current_el(env);
|
|
|
|
cs->watchpoint_hit = NULL;
|
|
if (extended_addresses_enabled(env)) {
|
|
env->exception.fsr = (1 << 9) | 0x22;
|
|
} else {
|
|
env->exception.fsr = 0x2;
|
|
}
|
|
env->exception.vaddress = wp_hit->hitaddr;
|
|
raise_exception(env, EXCP_DATA_ABORT,
|
|
syn_watchpoint(same_el, 0, wnr),
|
|
arm_debug_target_el(env));
|
|
}
|
|
} else {
|
|
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
|
|
bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
|
|
|
|
/* (1) GDB breakpoints should be handled first.
|
|
* (2) Do not raise a CPU exception if no CPU breakpoint has fired,
|
|
* since singlestep is also done by generating a debug internal
|
|
* exception.
|
|
*/
|
|
if (cpu_breakpoint_test(cs, pc, BP_GDB)
|
|
|| !cpu_breakpoint_test(cs, pc, BP_CPU)) {
|
|
return;
|
|
}
|
|
|
|
if (extended_addresses_enabled(env)) {
|
|
env->exception.fsr = (1 << 9) | 0x22;
|
|
} else {
|
|
env->exception.fsr = 0x2;
|
|
}
|
|
/* FAR is UNKNOWN, so doesn't need setting */
|
|
raise_exception(env, EXCP_PREFETCH_ABORT,
|
|
syn_breakpoint(same_el),
|
|
arm_debug_target_el(env));
|
|
}
|
|
}
|
|
|
|
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
|
|
The only way to do that in TCG is a conditional branch, which clobbers
|
|
all our temporaries. For now implement these as helper functions. */
|
|
|
|
/* Similarly for variable shift instructions. */
|
|
|
|
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
|
|
{
|
|
int shift = i & 0xff;
|
|
if (shift >= 32) {
|
|
if (shift == 32)
|
|
env->CF = x & 1;
|
|
else
|
|
env->CF = 0;
|
|
return 0;
|
|
} else if (shift != 0) {
|
|
env->CF = (x >> (32 - shift)) & 1;
|
|
return x << shift;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
|
|
{
|
|
int shift = i & 0xff;
|
|
if (shift >= 32) {
|
|
if (shift == 32)
|
|
env->CF = (x >> 31) & 1;
|
|
else
|
|
env->CF = 0;
|
|
return 0;
|
|
} else if (shift != 0) {
|
|
env->CF = (x >> (shift - 1)) & 1;
|
|
return x >> shift;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
|
|
{
|
|
int shift = i & 0xff;
|
|
if (shift >= 32) {
|
|
env->CF = (x >> 31) & 1;
|
|
return (int32_t)x >> 31;
|
|
} else if (shift != 0) {
|
|
env->CF = (x >> (shift - 1)) & 1;
|
|
return (int32_t)x >> shift;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
|
|
{
|
|
int shift1, shift;
|
|
shift1 = i & 0xff;
|
|
shift = shift1 & 0x1f;
|
|
if (shift == 0) {
|
|
if (shift1 != 0)
|
|
env->CF = (x >> 31) & 1;
|
|
return x;
|
|
} else {
|
|
env->CF = (x >> (shift - 1)) & 1;
|
|
return ((uint32_t)x >> shift) | (x << (32 - shift));
|
|
}
|
|
}
|