mirror of
https://github.com/yuzu-emu/unicorn
synced 2024-11-25 08:18:54 +00:00
1722be3e73
This is set to true when the index is for an instruction fetch translation. The core get_page_addr_code() sets it, as do the SOFTMMU_CODE_ACCESS acessors. All targets ignore it for now, and all other callers pass "false". This will allow targets who wish to split the mmu index between instruction and data accesses to do so. A subsequent patch will do just that for PowerPC. Backports commit 97ed5ccdee95f0b98bedc601ff979e368583472c from qemu
526 lines
16 KiB
C
526 lines
16 KiB
C
/*
|
|
* Common CPU TLB handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Modified for Unicorn Engine by Nguyen Anh Quynh, 2015 */
|
|
|
|
#include "config.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/cpu_ldst.h"
|
|
|
|
#include "exec/cputlb.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "tcg/tcg.h"
|
|
|
|
#include "uc_priv.h"
|
|
|
|
//#define DEBUG_TLB
|
|
//#define DEBUG_TLB_CHECK
|
|
|
|
static void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr);
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe);
|
|
static bool qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr, ram_addr_t *addr);
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size);
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr);
|
|
|
|
/* statistics */
|
|
//int tlb_flush_count;
|
|
|
|
/* NOTE:
|
|
* If flush_global is true (the usual case), flush all tlb entries.
|
|
* If flush_global is false, flush (at least) all tlb entries not
|
|
* marked global.
|
|
*
|
|
* Since QEMU doesn't currently implement a global/not-global flag
|
|
* for tlb entries, at the moment tlb_flush() will also flush all
|
|
* tlb entries in the flush_global == false case. This is OK because
|
|
* CPU architectures generally permit an implementation to drop
|
|
* entries from the TLB at any time, so flushing more entries than
|
|
* required is only an efficiency issue, not a correctness issue.
|
|
*/
|
|
void tlb_flush(CPUState *cpu, int flush_global)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush:\n");
|
|
#endif
|
|
/* must reset current TB so that interrupts cannot modify the
|
|
links while we are modifying them */
|
|
cpu->current_tb = NULL;
|
|
|
|
memset(env->tlb_table, -1, sizeof(env->tlb_table));
|
|
memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
|
|
memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
|
|
|
|
env->vtlb_index = 0;
|
|
env->tlb_flush_addr = -1;
|
|
env->tlb_flush_mask = 0;
|
|
//tlb_flush_count++;
|
|
}
|
|
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int i;
|
|
int mmu_idx;
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
|
#endif
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush_page: forced full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
#endif
|
|
tlb_flush(cpu, 1);
|
|
return;
|
|
}
|
|
/* must reset current TB so that interrupts cannot modify the
|
|
links while we are modifying them */
|
|
cpu->current_tb = NULL;
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
|
}
|
|
|
|
/* check whether there are entries that need to be flushed in the vtlb */
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
|
|
}
|
|
}
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
|
|
uintptr_t length)
|
|
{
|
|
uintptr_t addr;
|
|
|
|
if (tlb_is_dirty_ram(tlb_entry)) {
|
|
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
|
if ((addr - start) < length) {
|
|
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cpu_tlb_reset_dirty_all(struct uc_struct *uc,
|
|
ram_addr_t start1, ram_addr_t length)
|
|
{
|
|
CPUState *cpu = uc->cpu;
|
|
CPUArchState *env;
|
|
|
|
int mmu_idx;
|
|
|
|
env = cpu->env_ptr;
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < CPU_TLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
|
|
start1, length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update the TLB corresponding to virtual page vaddr
|
|
so that it is no longer dirty */
|
|
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
|
|
{
|
|
int i;
|
|
int mmu_idx;
|
|
|
|
vaddr &= TARGET_PAGE_MASK;
|
|
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
|
}
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add a new TLB entry. At most one entry for a given virtual address
|
|
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
|
supplied size is only used by tlb_flush_page. */
|
|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, MemTxAttrs attrs, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
MemoryRegionSection *section;
|
|
unsigned int index;
|
|
target_ulong address;
|
|
target_ulong code_address;
|
|
uintptr_t addend;
|
|
CPUTLBEntry *te;
|
|
hwaddr iotlb, xlat, sz;
|
|
unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
|
|
|
|
assert(size >= TARGET_PAGE_SIZE);
|
|
if (size != TARGET_PAGE_SIZE) {
|
|
tlb_add_large_page(env, vaddr, size);
|
|
}
|
|
|
|
sz = size;
|
|
section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
|
|
assert(sz >= TARGET_PAGE_SIZE);
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
|
" prot=%x idx=%d\n",
|
|
vaddr, paddr, prot, mmu_idx);
|
|
#endif
|
|
|
|
address = vaddr;
|
|
if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
|
|
/* IO memory case */
|
|
address |= TLB_MMIO;
|
|
addend = 0;
|
|
} else {
|
|
/* TLB_MMIO for rom/romd handled below */
|
|
addend = (uintptr_t)((char*)memory_region_get_ram_ptr(section->mr) + xlat);
|
|
}
|
|
|
|
code_address = address;
|
|
iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
|
|
prot, &address);
|
|
|
|
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
te = &env->tlb_table[mmu_idx][index];
|
|
|
|
/* do not discard the translation in te, evict it into a victim tlb */
|
|
env->tlb_v_table[mmu_idx][vidx] = *te;
|
|
env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
|
|
|
|
/* refill the tlb */
|
|
env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
|
|
env->iotlb[mmu_idx][index].attrs = attrs;
|
|
te->addend = (uintptr_t)(addend - vaddr);
|
|
if (prot & PAGE_READ) {
|
|
te->addr_read = address;
|
|
} else {
|
|
te->addr_read = -1;
|
|
}
|
|
|
|
if (prot & PAGE_EXEC) {
|
|
te->addr_code = code_address;
|
|
} else {
|
|
te->addr_code = -1;
|
|
}
|
|
if (prot & PAGE_WRITE) {
|
|
if ((memory_region_is_ram(section->mr) && section->readonly)
|
|
|| memory_region_is_romd(section->mr)) {
|
|
/* Write access calls the I/O callback. */
|
|
te->addr_write = address | TLB_MMIO;
|
|
} else if (memory_region_is_ram(section->mr)
|
|
&& cpu_physical_memory_is_clean(cpu->uc, (ram_addr_t)(section->mr->ram_addr
|
|
+ xlat))) {
|
|
te->addr_write = address | TLB_NOTDIRTY;
|
|
} else {
|
|
te->addr_write = address;
|
|
}
|
|
} else {
|
|
te->addr_write = -1;
|
|
}
|
|
}
|
|
|
|
/* Add a new TLB entry, but without specifying the memory
|
|
* transaction attributes to be used.
|
|
*/
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
|
|
prot, mmu_idx, size);
|
|
}
|
|
|
|
/* NOTE: this function can trigger an exception */
|
|
/* NOTE2: the returned address is not exactly the physical address: it
|
|
* is actually a ram_addr_t (in system mode; the user mode emulation
|
|
* version of this function returns a guest virtual address).
|
|
*/
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
|
|
{
|
|
int mmu_idx, page_index, pd;
|
|
void *p;
|
|
MemoryRegion *mr;
|
|
ram_addr_t ram_addr;
|
|
CPUState *cpu = ENV_GET_CPU(env1);
|
|
|
|
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
mmu_idx = cpu_mmu_index(env1, true);
|
|
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
|
|
(addr & TARGET_PAGE_MASK))) {
|
|
cpu_ldub_code(env1, addr);
|
|
//check for NX related error from softmmu
|
|
if (env1->invalid_error == UC_ERR_FETCH_PROT) {
|
|
return -1;
|
|
}
|
|
}
|
|
pd = env1->iotlb[mmu_idx][page_index].addr & ~TARGET_PAGE_MASK;
|
|
mr = iotlb_to_region(cpu, pd);
|
|
if (memory_region_is_unassigned(cpu->uc, mr)) {
|
|
CPUClass *cc = CPU_GET_CLASS(env1->uc, cpu);
|
|
|
|
if (cc->do_unassigned_access) {
|
|
cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
|
|
} else {
|
|
//cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
|
|
// TARGET_FMT_lx "\n", addr); // qq
|
|
env1->invalid_addr = addr;
|
|
env1->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return -1;
|
|
}
|
|
}
|
|
p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
|
|
if (!qemu_ram_addr_from_host_nofail(cpu->uc, p, &ram_addr)) {
|
|
env1->invalid_addr = addr;
|
|
env1->invalid_error = UC_ERR_FETCH_UNMAPPED;
|
|
return -1;
|
|
} else
|
|
return ram_addr;
|
|
}
|
|
|
|
static bool qemu_ram_addr_from_host_nofail(struct uc_struct *uc, void *ptr, ram_addr_t *ram_addr)
|
|
{
|
|
if (qemu_ram_addr_from_host(uc, ptr, ram_addr) == NULL) {
|
|
// fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
|
{
|
|
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
|
tlb_entry->addr_write = vaddr;
|
|
}
|
|
}
|
|
|
|
/* Our TLB does not support large pages, so remember the area covered by
|
|
large pages and trigger a full TLB flush if these are invalidated. */
|
|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
|
|
target_ulong size)
|
|
{
|
|
target_ulong mask = ~(size - 1);
|
|
|
|
if (env->tlb_flush_addr == (target_ulong)-1) {
|
|
env->tlb_flush_addr = vaddr & mask;
|
|
env->tlb_flush_mask = mask;
|
|
return;
|
|
}
|
|
/* Extend the existing region to include the new page.
|
|
This is a compromise between unnecessary flushes and the cost
|
|
of maintaining a full variable size TLB. */
|
|
mask &= env->tlb_flush_mask;
|
|
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
|
mask <<= 1;
|
|
}
|
|
env->tlb_flush_addr &= mask;
|
|
env->tlb_flush_mask = mask;
|
|
}
|
|
|
|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
|
|
{
|
|
return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
|
|
}
|
|
|
|
static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, va_list argp)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush_by_mmuidx:");
|
|
#endif
|
|
/* must reset current TB so that interrupts cannot modify the
|
|
links while we are modifying them */
|
|
cpu->current_tb = NULL;
|
|
|
|
for (;;) {
|
|
int mmu_idx = va_arg(argp, int);
|
|
|
|
if (mmu_idx < 0) {
|
|
break;
|
|
}
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf(" %d", mmu_idx);
|
|
#endif
|
|
|
|
memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
|
|
memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
|
|
}
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("\n");
|
|
#endif
|
|
|
|
memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx(CPUState *cpu, ...)
|
|
{
|
|
va_list argp;
|
|
va_start(argp, cpu);
|
|
v_tlb_flush_by_mmuidx(cpu, argp);
|
|
va_end(argp);
|
|
}
|
|
|
|
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
|
{
|
|
if (addr == (tlb_entry->addr_read &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
|
addr == (tlb_entry->addr_write &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
|
addr == (tlb_entry->addr_code &
|
|
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
memset(tlb_entry, -1, sizeof(*tlb_entry));
|
|
}
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int i, k;
|
|
va_list argp;
|
|
|
|
va_start(argp, addr);
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("tlb_flush_page_by_mmu_idx: " TARGET_FMT_lx, addr);
|
|
#endif
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
|
#if defined(DEBUG_TLB)
|
|
printf(" forced full flush ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
env->tlb_flush_addr, env->tlb_flush_mask);
|
|
#endif
|
|
v_tlb_flush_by_mmuidx(cpu, argp);
|
|
va_end(argp);
|
|
return;
|
|
}
|
|
/* must reset current TB so that interrupts cannot modify the
|
|
links while we are modifying them */
|
|
cpu->current_tb = NULL;
|
|
|
|
addr &= TARGET_PAGE_MASK;
|
|
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
|
|
for (;;) {
|
|
int mmu_idx = va_arg(argp, int);
|
|
|
|
if (mmu_idx < 0) {
|
|
break;
|
|
}
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf(" %d", mmu_idx);
|
|
#endif
|
|
|
|
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
|
|
|
/* check whether there are vltb entries that need to be flushed */
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
|
|
}
|
|
}
|
|
va_end(argp);
|
|
|
|
#if defined(DEBUG_TLB)
|
|
printf("\n");
|
|
#endif
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
/* update the TLBs so that writes to code in the virtual page 'addr'
|
|
can be detected */
|
|
void tlb_protect_code(struct uc_struct *uc, ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_test_and_clear_dirty(uc, ram_addr, TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
|
|
tested for self modifying code */
|
|
void tlb_unprotect_code(CPUState *cpu, ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_set_dirty_flag(cpu->uc, ram_addr, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
#undef MMUSUFFIX
|
|
|
|
#define MMUSUFFIX _cmmu
|
|
#undef GETPC_ADJ
|
|
#define GETPC_ADJ 0
|
|
#undef GETRA
|
|
#define GETRA() ((uintptr_t)0)
|
|
#define SOFTMMU_CODE_ACCESS
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|