unicorn/tests/unit/test_x86_shl.c
2016-07-30 16:41:40 +02:00

308 lines
8.5 KiB
C

#include <stdint.h>
#include "unicorn_test.h"
#define OK(x) uc_assert_success(x)
#define CF_MASK (1<<0)
#define PF_MASK (1<<2)
#define ZF_MASK (1<<6)
#define SF_MASK (1<<7)
#define OF_MASK (1<<11)
#define ALL_MASK (OF_MASK|SF_MASK|ZF_MASK|PF_MASK|CF_MASK)
#define NO_MASK 0xFFFFFFFF
typedef struct _reg_value
{
uint32_t regId, regValue, mask;
} reg_value;
typedef struct _instruction
{
const char* asmStr;
const uint8_t* code;
uint32_t codeSize;
const reg_value* values;
uint32_t nbValues;
} instruction;
typedef struct _block
{
instruction* insts[255];
uint32_t nbInsts;
uint32_t size;
} block;
typedef struct _exec_state
{
uint32_t curr;
block* block;
} exec_state;
/******************************************************************************/
#define CAT2(X, Y) X ## Y
#define CAT(X, Y) CAT2(X, Y)
#define ADD_INSTRUCTION(BLOCK, CODE_ASM, CODE, REGVALUES) \
const uint8_t CAT(code, __LINE__)[] = CODE; \
const reg_value CAT(regValues, __LINE__)[] = REGVALUES; \
inst = newInstruction(CAT(code, __LINE__), sizeof(CAT(code, __LINE__)), CODE_ASM, CAT(regValues, __LINE__), sizeof(CAT(regValues, __LINE__)) / sizeof(reg_value)); \
addInstructionToBlock(BLOCK, inst);
#define V(...) { __VA_ARGS__ }
/******************************************************************************/
instruction* newInstruction(const uint8_t * _code, uint32_t _codeSize, const char* _asmStr, const reg_value* _values, uint32_t _nbValues);
void addInstructionToBlock(block* _b, instruction* _i);
uint32_t loadBlock(uc_engine *_uc, block* _block, uint32_t _at);
void freeBlock(block* _block);
const char* getRegisterName(uint32_t _regid);
uint32_t getRegisterValue(uc_engine *uc, uint32_t _regid);
/******************************************************************************/
void hook_code_test_i386_shl(uc_engine *uc, uint64_t address, uint32_t size, void *user_data)
{
uint32_t i;
exec_state* es = (exec_state*)user_data;
instruction* currInst = es->block->insts[es->curr];
print_message("|\teip=%08x - %s\n", (uint32_t)address, es->block->insts[es->curr]->asmStr);
for (i = 0; i < currInst->nbValues; i++)
{
if (currInst->values[i].regId == UC_X86_REG_INVALID) continue;
uint32_t regValue = getRegisterValue(uc, currInst->values[i].regId);
print_message("|\t\ttesting %s : ", getRegisterName(currInst->values[i].regId));
assert_int_equal(regValue & currInst->values[i].mask, currInst->values[i].regValue);
print_message("ok\n");
}
es->curr++;
if (es->curr >= es->block->nbInsts)
{
print_message("stopping emulation\n");
uc_emu_stop(uc);
}
}
#define ADDR_START 0x100000
static void test_i386_shl_prob(void **state)
{
uc_engine *uc;
uc_hook trace1;
// Initialize emulator in X86-32bit mode
OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc));
OK(uc_mem_map(uc, ADDR_START, 0x1000, UC_PROT_ALL));
{
exec_state es;
block block_shl_prob;
instruction* inst;
es.curr = 0;
es.block = &block_shl_prob;
block_shl_prob.nbInsts = 0;
ADD_INSTRUCTION(&block_shl_prob, "mov ebx, 3Ch", V(0xBB, 0x3C, 0x00, 0x00, 0x00), V(V(UC_X86_REG_INVALID, 0x0, NO_MASK)));
ADD_INSTRUCTION(&block_shl_prob, "mov cl, 2", V(0xB1, 0x02), V(V(UC_X86_REG_EBX, 0x3C, NO_MASK)));
ADD_INSTRUCTION(&block_shl_prob, "shl ebx, cl", V(0xD3, 0xE3), V(V(UC_X86_REG_EBX, 0x3C, NO_MASK), V(UC_X86_REG_CL, 0x2, NO_MASK)));
ADD_INSTRUCTION(&block_shl_prob, "lahf", V(0x9F), V(V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_CL, 0x2, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK)));
ADD_INSTRUCTION(&block_shl_prob, "int3", V(0xCC), V(V(UC_X86_REG_AH, 0x4, PF_MASK), V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_CL, 0x2, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK)));
loadBlock(uc, &block_shl_prob, ADDR_START);
// initialize machine registers
uint32_t zero = 0;
OK(uc_reg_write(uc, UC_X86_REG_EAX, &zero));
OK(uc_reg_write(uc, UC_X86_REG_EBX, &zero));
OK(uc_reg_write(uc, UC_X86_REG_ECX, &zero));
OK(uc_reg_write(uc, UC_X86_REG_EDX, &zero));
OK(uc_hook_add(uc, &trace1, UC_HOOK_CODE, hook_code_test_i386_shl, &es, 1, 0));
// emulate machine code in infinite time
OK(uc_emu_start(uc, ADDR_START, ADDR_START + block_shl_prob.size - 1, 0, 0));
freeBlock(&block_shl_prob);
}
uc_close(uc);
}
static void test_i386_shl_ok(void **state)
{
uc_engine *uc;
uc_hook trace1;
// Initialize emulator in X86-32bit mode
OK(uc_open(UC_ARCH_X86, UC_MODE_32, &uc));
OK(uc_mem_map(uc, ADDR_START, 0x1000, UC_PROT_ALL));
{
exec_state es;
block block_shl_ok;
instruction* inst;
es.curr = 0;
es.block = &block_shl_ok;
block_shl_ok.nbInsts = 0;
ADD_INSTRUCTION(&block_shl_ok, "mov ebx, 3Ch", V(0xBB, 0x3C, 0x00, 0x00, 0x00), V(V(UC_X86_REG_INVALID, 0x0, NO_MASK)));
ADD_INSTRUCTION(&block_shl_ok, "shl ebx, 2", V(0xC1, 0xE3, 0x02), V(V(UC_X86_REG_EBX, 0x3C, NO_MASK)));
ADD_INSTRUCTION(&block_shl_ok, "lahf", V(0x9F), V(V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK)));
ADD_INSTRUCTION(&block_shl_ok, "int3", V(0xCC), V(V(UC_X86_REG_AH, 0x4, PF_MASK), V(UC_X86_REG_EBX, 0xF0, NO_MASK), V(UC_X86_REG_EFLAGS, 0x4, ALL_MASK)));
loadBlock(uc, &block_shl_ok, ADDR_START);
// initialize machine registers
uint32_t zero = 0;
OK(uc_reg_write(uc, UC_X86_REG_EAX, &zero));
OK(uc_reg_write(uc, UC_X86_REG_EBX, &zero));
OK(uc_reg_write(uc, UC_X86_REG_ECX, &zero));
OK(uc_reg_write(uc, UC_X86_REG_EDX, &zero));
OK(uc_hook_add(uc, &trace1, UC_HOOK_CODE, hook_code_test_i386_shl, &es, 1, 0));
// emulate machine code in infinite time
OK(uc_emu_start(uc, ADDR_START, ADDR_START + block_shl_ok.size - 1, 0, 0));
freeBlock(&block_shl_ok);
}
uc_close(uc);
}
/******************************************************************************/
int main(void) {
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_i386_shl_prob),
cmocka_unit_test(test_i386_shl_ok),
};
return cmocka_run_group_tests(tests, NULL, NULL);
}
/******************************************************************************/
instruction* newInstruction(const uint8_t * _code, uint32_t _codeSize, const char* _asmStr, const reg_value* _values, uint32_t _nbValues)
{
instruction* inst = (instruction*)malloc(sizeof(instruction));
inst->asmStr = _asmStr;
inst->code = _code;
inst->codeSize = _codeSize;
inst->values = _values;
inst->nbValues = _nbValues;
return inst;
}
void addInstructionToBlock(block* _b, instruction* _i)
{
_b->insts[_b->nbInsts++] = _i;
}
uint32_t loadBlock(uc_engine *_uc, block* _block, uint32_t _at)
{
uint32_t i, offset;
for (i = 0, offset = 0; i < _block->nbInsts; i++)
{
OK(uc_mem_write(_uc, _at + offset, _block->insts[i]->code, _block->insts[i]->codeSize));
offset += _block->insts[i]->codeSize;
}
_block->size = offset;
return offset;
}
void freeBlock(block* _block)
{
uint32_t i;
for (i = 0; i < _block->nbInsts; i++)
free(_block->insts[i]);
}
const char* getRegisterName(uint32_t _regid)
{
switch (_regid)
{
//8
case UC_X86_REG_AH: return "AH";
case UC_X86_REG_AL: return "AL";
case UC_X86_REG_BH: return "BH";
case UC_X86_REG_BL: return "BL";
case UC_X86_REG_CL: return "CL";
case UC_X86_REG_CH: return "CH";
case UC_X86_REG_DH: return "DH";
case UC_X86_REG_DL: return "DL";
//16
case UC_X86_REG_AX: return "AX";
case UC_X86_REG_BX: return "BX";
case UC_X86_REG_CX: return "CX";
case UC_X86_REG_DX: return "DX";
//32
case UC_X86_REG_EAX: return "EAX";
case UC_X86_REG_EBX: return "EBX";
case UC_X86_REG_ECX: return "ECX";
case UC_X86_REG_EDX: return "EDX";
case UC_X86_REG_EDI: return "EDI";
case UC_X86_REG_ESI: return "ESI";
case UC_X86_REG_EBP: return "EBP";
case UC_X86_REG_ESP: return "ESP";
case UC_X86_REG_EIP: return "EIP";
case UC_X86_REG_EFLAGS: return "EFLAGS";
default: fail();
}
return "UNKNOWN";
}
uint32_t getRegisterValue(uc_engine *uc, uint32_t _regid)
{
switch (_regid)
{
//8
case UC_X86_REG_AH: case UC_X86_REG_AL:
case UC_X86_REG_BH: case UC_X86_REG_BL:
case UC_X86_REG_CL: case UC_X86_REG_CH:
case UC_X86_REG_DH: case UC_X86_REG_DL:
{
uint8_t val = 0;
uc_reg_read(uc, _regid, &val);
return val;
}
//16
case UC_X86_REG_AX: case UC_X86_REG_BX:
case UC_X86_REG_CX: case UC_X86_REG_DX:
{
uint16_t val = 0;
uc_reg_read(uc, _regid, &val);
return val;
}
//32
case UC_X86_REG_EAX: case UC_X86_REG_EBX:
case UC_X86_REG_ECX: case UC_X86_REG_EDX:
case UC_X86_REG_EDI: case UC_X86_REG_ESI:
case UC_X86_REG_EBP: case UC_X86_REG_ESP:
case UC_X86_REG_EIP: case UC_X86_REG_EFLAGS:
{
uint32_t val = 0;
uc_reg_read(uc, _regid, &val);
return val;
}
default: fail();
}
return 0;
}