unicorn/qemu/scripts/decodetree.py
Richard Henderson 36a718c062
decodetree: Add !extern flag to argument sets
Allow argument sets to be shared between two decoders by avoiding
a re-declaration error. Make sure that anonymous argument sets
and anonymous formats have unique names.

Backports commit abd04f9290094f4eb7f3c07335766bbac3de22bb from qemu
2018-11-11 08:21:20 -05:00

1072 lines
31 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2018 Linaro Limited
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, see <http://www.gnu.org/licenses/>.
#
#
# Generate a decoding tree from a specification file.
#
# The tree is built from instruction "patterns". A pattern may represent
# a single architectural instruction or a group of same, depending on what
# is convenient for further processing.
#
# Each pattern has "fixedbits" & "fixedmask", the combination of which
# describes the condition under which the pattern is matched:
#
# (insn & fixedmask) == fixedbits
#
# Each pattern may have "fields", which are extracted from the insn and
# passed along to the translator. Examples of such are registers,
# immediates, and sub-opcodes.
#
# In support of patterns, one may declare fields, argument sets, and
# formats, each of which may be re-used to simplify further definitions.
#
# *** Field syntax:
#
# field_def := '%' identifier ( unnamed_field )+ ( !function=identifier )?
# unnamed_field := number ':' ( 's' ) number
#
# For unnamed_field, the first number is the least-significant bit position of
# the field and the second number is the length of the field. If the 's' is
# present, the field is considered signed. If multiple unnamed_fields are
# present, they are concatenated. In this way one can define disjoint fields.
#
# If !function is specified, the concatenated result is passed through the
# named function, taking and returning an integral value.
#
# FIXME: the fields of the structure into which this result will be stored
# is restricted to "int". Which means that we cannot expand 64-bit items.
#
# Field examples:
#
# %disp 0:s16 -- sextract(i, 0, 16)
# %imm9 16:6 10:3 -- extract(i, 16, 6) << 3 | extract(i, 10, 3)
# %disp12 0:s1 1:1 2:10 -- sextract(i, 0, 1) << 11
# | extract(i, 1, 1) << 10
# | extract(i, 2, 10)
# %shimm8 5:s8 13:1 !function=expand_shimm8
# -- expand_shimm8(sextract(i, 5, 8) << 1
# | extract(i, 13, 1))
#
# *** Argument set syntax:
#
# args_def := '&' identifier ( args_elt )+ ( !extern )?
# args_elt := identifier
#
# Each args_elt defines an argument within the argument set.
# Each argument set will be rendered as a C structure "arg_$name"
# with each of the fields being one of the member arguments.
#
# If !extern is specified, the backing structure is assumed to
# have been already declared, typically via a second decoder.
#
# Argument set examples:
#
# &reg3 ra rb rc
# &loadstore reg base offset
#
# *** Format syntax:
#
# fmt_def := '@' identifier ( fmt_elt )+
# fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
# fixedbit_elt := [01.-]+
# field_elt := identifier ':' 's'? number
# field_ref := '%' identifier | identifier '=' '%' identifier
# args_ref := '&' identifier
#
# Defining a format is a handy way to avoid replicating groups of fields
# across many instruction patterns.
#
# A fixedbit_elt describes a contiguous sequence of bits that must
# be 1, 0, [.-] for don't care. The difference between '.' and '-'
# is that '.' means that the bit will be covered with a field or a
# final [01] from the pattern, and '-' means that the bit is really
# ignored by the cpu and will not be specified.
#
# A field_elt describes a simple field only given a width; the position of
# the field is implied by its position with respect to other fixedbit_elt
# and field_elt.
#
# If any fixedbit_elt or field_elt appear then all bits must be defined.
# Padding with a fixedbit_elt of all '.' is an easy way to accomplish that.
#
# A field_ref incorporates a field by reference. This is the only way to
# add a complex field to a format. A field may be renamed in the process
# via assignment to another identifier. This is intended to allow the
# same argument set be used with disjoint named fields.
#
# A single args_ref may specify an argument set to use for the format.
# The set of fields in the format must be a subset of the arguments in
# the argument set. If an argument set is not specified, one will be
# inferred from the set of fields.
#
# It is recommended, but not required, that all field_ref and args_ref
# appear at the end of the line, not interleaving with fixedbit_elf or
# field_elt.
#
# Format examples:
#
# @opr ...... ra:5 rb:5 ... 0 ....... rc:5
# @opi ...... ra:5 lit:8 1 ....... rc:5
#
# *** Pattern syntax:
#
# pat_def := identifier ( pat_elt )+
# pat_elt := fixedbit_elt | field_elt | field_ref
# | args_ref | fmt_ref | const_elt
# fmt_ref := '@' identifier
# const_elt := identifier '=' number
#
# The fixedbit_elt and field_elt specifiers are unchanged from formats.
# A pattern that does not specify a named format will have one inferred
# from a referenced argument set (if present) and the set of fields.
#
# A const_elt allows a argument to be set to a constant value. This may
# come in handy when fields overlap between patterns and one has to
# include the values in the fixedbit_elt instead.
#
# The decoder will call a translator function for each pattern matched.
#
# Pattern examples:
#
# addl_r 010000 ..... ..... .... 0000000 ..... @opr
# addl_i 010000 ..... ..... .... 0000000 ..... @opi
#
# which will, in part, invoke
#
# trans_addl_r(ctx, &arg_opr, insn)
# and
# trans_addl_i(ctx, &arg_opi, insn)
#
import os
import re
import sys
import getopt
insnwidth = 32
insnmask = 0xffffffff
fields = {}
arguments = {}
formats = {}
patterns = []
translate_prefix = 'trans'
translate_scope = 'static '
input_file = ''
output_file = None
output_fd = None
insntype = 'uint32_t'
decode_function = 'decode'
re_ident = '[a-zA-Z][a-zA-Z0-9_]*'
def error(lineno, *args):
"""Print an error message from file:line and args and exit."""
global output_file
global output_fd
if lineno:
r = '{0}:{1}: error:'.format(input_file, lineno)
elif input_file:
r = '{0}: error:'.format(input_file)
else:
r = 'error:'
for a in args:
r += ' ' + str(a)
r += '\n'
sys.stderr.write(r)
if output_file and output_fd:
output_fd.close()
os.remove(output_file)
exit(1)
def output(*args):
global output_fd
for a in args:
output_fd.write(a)
if sys.version_info >= (3, 0):
re_fullmatch = re.fullmatch
else:
def re_fullmatch(pat, str):
return re.match('^' + pat + '$', str)
def output_autogen():
output('/* This file is autogenerated by scripts/decodetree.py. */\n\n')
def str_indent(c):
"""Return a string with C spaces"""
return ' ' * c
def str_fields(fields):
"""Return a string uniquely identifing FIELDS"""
r = ''
for n in sorted(fields.keys()):
r += '_' + n
return r[1:]
def str_match_bits(bits, mask):
"""Return a string pretty-printing BITS/MASK"""
global insnwidth
i = 1 << (insnwidth - 1)
space = 0x01010100
r = ''
while i != 0:
if i & mask:
if i & bits:
r += '1'
else:
r += '0'
else:
r += '.'
if i & space:
r += ' '
i >>= 1
return r
def is_pow2(x):
"""Return true iff X is equal to a power of 2."""
return (x & (x - 1)) == 0
def ctz(x):
"""Return the number of times 2 factors into X."""
r = 0
while ((x >> r) & 1) == 0:
r += 1
return r
def is_contiguous(bits):
shift = ctz(bits)
if is_pow2((bits >> shift) + 1):
return shift
else:
return -1
def eq_fields_for_args(flds_a, flds_b):
if len(flds_a) != len(flds_b):
return False
for k, a in flds_a.items():
if k not in flds_b:
return False
return True
def eq_fields_for_fmts(flds_a, flds_b):
if len(flds_a) != len(flds_b):
return False
for k, a in flds_a.items():
if k not in flds_b:
return False
b = flds_b[k]
if a.__class__ != b.__class__ or a != b:
return False
return True
class Field:
"""Class representing a simple instruction field"""
def __init__(self, sign, pos, len):
self.sign = sign
self.pos = pos
self.len = len
self.mask = ((1 << len) - 1) << pos
def __str__(self):
if self.sign:
s = 's'
else:
s = ''
return str(self.pos) + ':' + s + str(self.len)
def str_extract(self):
if self.sign:
extr = 'sextract32'
else:
extr = 'extract32'
return '{0}(insn, {1}, {2})'.format(extr, self.pos, self.len)
def __eq__(self, other):
return self.sign == other.sign and self.sign == other.sign
def __ne__(self, other):
return not self.__eq__(other)
# end Field
class MultiField:
"""Class representing a compound instruction field"""
def __init__(self, subs, mask):
self.subs = subs
self.sign = subs[0].sign
self.mask = mask
def __str__(self):
return str(self.subs)
def str_extract(self):
ret = '0'
pos = 0
for f in reversed(self.subs):
if pos == 0:
ret = f.str_extract()
else:
ret = 'deposit32({0}, {1}, {2}, {3})' \
.format(ret, pos, 32 - pos, f.str_extract())
pos += f.len
return ret
def __ne__(self, other):
if len(self.subs) != len(other.subs):
return True
for a, b in zip(self.subs, other.subs):
if a.__class__ != b.__class__ or a != b:
return True
return False
def __eq__(self, other):
return not self.__ne__(other)
# end MultiField
class ConstField:
"""Class representing an argument field with constant value"""
def __init__(self, value):
self.value = value
self.mask = 0
self.sign = value < 0
def __str__(self):
return str(self.value)
def str_extract(self):
return str(self.value)
def __cmp__(self, other):
return self.value - other.value
# end ConstField
class FunctionField:
"""Class representing a field passed through an expander"""
def __init__(self, func, base):
self.mask = base.mask
self.sign = base.sign
self.base = base
self.func = func
def __str__(self):
return self.func + '(' + str(self.base) + ')'
def str_extract(self):
return self.func + '(' + self.base.str_extract() + ')'
def __eq__(self, other):
return self.func == other.func and self.base == other.base
def __ne__(self, other):
return not self.__eq__(other)
# end FunctionField
class Arguments:
"""Class representing the extracted fields of a format"""
def __init__(self, nm, flds, extern):
self.name = nm
self.extern = extern
self.fields = sorted(flds)
def __str__(self):
return self.name + ' ' + str(self.fields)
def struct_name(self):
return 'arg_' + self.name
def output_def(self):
if not self.extern:
output('typedef struct {\n')
for n in self.fields:
output(' int ', n, ';\n')
output('} ', self.struct_name(), ';\n\n')
# end Arguments
class General:
"""Common code between instruction formats and instruction patterns"""
def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds):
self.name = name
self.lineno = lineno
self.base = base
self.fixedbits = fixb
self.fixedmask = fixm
self.undefmask = udfm
self.fieldmask = fldm
self.fields = flds
def __str__(self):
r = self.name
if self.base:
r = r + ' ' + self.base.name
else:
r = r + ' ' + str(self.fields)
r = r + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
return r
def str1(self, i):
return str_indent(i) + self.__str__()
# end General
class Format(General):
"""Class representing an instruction format"""
def extract_name(self):
return 'extract_' + self.name
def output_extract(self):
output('static void ', self.extract_name(), '(',
self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n')
for n, f in self.fields.items():
output(' a->', n, ' = ', f.str_extract(), ';\n')
output('}\n\n')
# end Format
class Pattern(General):
"""Class representing an instruction pattern"""
def output_decl(self):
global translate_scope
global translate_prefix
output('typedef ', self.base.base.struct_name(),
' arg_', self.name, ';\n')
output(translate_scope, 'bool ', translate_prefix, '_', self.name,
'(DisasContext *ctx, arg_', self.name,
' *a, ', insntype, ' insn);\n')
def output_code(self, i, extracted, outerbits, outermask):
global translate_prefix
ind = str_indent(i)
arg = self.base.base.name
output(ind, '/* line ', str(self.lineno), ' */\n')
if not extracted:
output(ind, self.base.extract_name(), '(&u.f_', arg, ', insn);\n')
for n, f in self.fields.items():
output(ind, 'u.f_', arg, '.', n, ' = ', f.str_extract(), ';\n')
output(ind, 'return ', translate_prefix, '_', self.name,
'(ctx, &u.f_', arg, ', insn);\n')
# end Pattern
def parse_field(lineno, name, toks):
"""Parse one instruction field from TOKS at LINENO"""
global fields
global re_ident
global insnwidth
# A "simple" field will have only one entry;
# a "multifield" will have several.
subs = []
width = 0
func = None
for t in toks:
if re_fullmatch('!function=' + re_ident, t):
if func:
error(lineno, 'duplicate function')
func = t.split('=')
func = func[1]
continue
if re_fullmatch('[0-9]+:s[0-9]+', t):
# Signed field extract
subtoks = t.split(':s')
sign = True
elif re_fullmatch('[0-9]+:[0-9]+', t):
# Unsigned field extract
subtoks = t.split(':')
sign = False
else:
error(lineno, 'invalid field token "{0}"'.format(t))
po = int(subtoks[0])
le = int(subtoks[1])
if po + le > insnwidth:
error(lineno, 'field {0} too large'.format(t))
f = Field(sign, po, le)
subs.append(f)
width += le
if width > insnwidth:
error(lineno, 'field too large')
if len(subs) == 1:
f = subs[0]
else:
mask = 0
for s in subs:
if mask & s.mask:
error(lineno, 'field components overlap')
mask |= s.mask
f = MultiField(subs, mask)
if func:
f = FunctionField(func, f)
if name in fields:
error(lineno, 'duplicate field', name)
fields[name] = f
# end parse_field
def parse_arguments(lineno, name, toks):
"""Parse one argument set from TOKS at LINENO"""
global arguments
global re_ident
flds = []
extern = False
for t in toks:
if re_fullmatch('!extern', t):
extern = True
continue
if not re_fullmatch(re_ident, t):
error(lineno, 'invalid argument set token "{0}"'.format(t))
if t in flds:
error(lineno, 'duplicate argument "{0}"'.format(t))
flds.append(t)
if name in arguments:
error(lineno, 'duplicate argument set', name)
arguments[name] = Arguments(name, flds, extern)
# end parse_arguments
def lookup_field(lineno, name):
global fields
if name in fields:
return fields[name]
error(lineno, 'undefined field', name)
def add_field(lineno, flds, new_name, f):
if new_name in flds:
error(lineno, 'duplicate field', new_name)
flds[new_name] = f
return flds
def add_field_byname(lineno, flds, new_name, old_name):
return add_field(lineno, flds, new_name, lookup_field(lineno, old_name))
def infer_argument_set(flds):
global arguments
global decode_function
for arg in arguments.values():
if eq_fields_for_args(flds, arg.fields):
return arg
name = decode_function + str(len(arguments))
arg = Arguments(name, flds.keys(), False)
arguments[name] = arg
return arg
def infer_format(arg, fieldmask, flds):
global arguments
global formats
global decode_function
const_flds = {}
var_flds = {}
for n, c in flds.items():
if c is ConstField:
const_flds[n] = c
else:
var_flds[n] = c
# Look for an existing format with the same argument set and fields
for fmt in formats.values():
if arg and fmt.base != arg:
continue
if fieldmask != fmt.fieldmask:
continue
if not eq_fields_for_fmts(flds, fmt.fields):
continue
return (fmt, const_flds)
name = decode_function + '_Fmt_' + str(len(formats))
if not arg:
arg = infer_argument_set(flds)
fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds)
formats[name] = fmt
return (fmt, const_flds)
# end infer_format
def parse_generic(lineno, is_format, name, toks):
"""Parse one instruction format from TOKS at LINENO"""
global fields
global arguments
global formats
global patterns
global re_ident
global insnwidth
global insnmask
fixedmask = 0
fixedbits = 0
undefmask = 0
width = 0
flds = {}
arg = None
fmt = None
for t in toks:
# '&Foo' gives a format an explcit argument set.
if t[0] == '&':
tt = t[1:]
if arg:
error(lineno, 'multiple argument sets')
if tt in arguments:
arg = arguments[tt]
else:
error(lineno, 'undefined argument set', t)
continue
# '@Foo' gives a pattern an explicit format.
if t[0] == '@':
tt = t[1:]
if fmt:
error(lineno, 'multiple formats')
if tt in formats:
fmt = formats[tt]
else:
error(lineno, 'undefined format', t)
continue
# '%Foo' imports a field.
if t[0] == '%':
tt = t[1:]
flds = add_field_byname(lineno, flds, tt, tt)
continue
# 'Foo=%Bar' imports a field with a different name.
if re_fullmatch(re_ident + '=%' + re_ident, t):
(fname, iname) = t.split('=%')
flds = add_field_byname(lineno, flds, fname, iname)
continue
# 'Foo=number' sets an argument field to a constant value
if re_fullmatch(re_ident + '=[0-9]+', t):
(fname, value) = t.split('=')
value = int(value)
flds = add_field(lineno, flds, fname, ConstField(value))
continue
# Pattern of 0s, 1s, dots and dashes indicate required zeros,
# required ones, or dont-cares.
if re_fullmatch('[01.-]+', t):
shift = len(t)
fms = t.replace('0', '1')
fms = fms.replace('.', '0')
fms = fms.replace('-', '0')
fbs = t.replace('.', '0')
fbs = fbs.replace('-', '0')
ubm = t.replace('1', '0')
ubm = ubm.replace('.', '0')
ubm = ubm.replace('-', '1')
fms = int(fms, 2)
fbs = int(fbs, 2)
ubm = int(ubm, 2)
fixedbits = (fixedbits << shift) | fbs
fixedmask = (fixedmask << shift) | fms
undefmask = (undefmask << shift) | ubm
# Otherwise, fieldname:fieldwidth
elif re_fullmatch(re_ident + ':s?[0-9]+', t):
(fname, flen) = t.split(':')
sign = False
if flen[0] == 's':
sign = True
flen = flen[1:]
shift = int(flen, 10)
f = Field(sign, insnwidth - width - shift, shift)
flds = add_field(lineno, flds, fname, f)
fixedbits <<= shift
fixedmask <<= shift
undefmask <<= shift
else:
error(lineno, 'invalid token "{0}"'.format(t))
width += shift
# We should have filled in all of the bits of the instruction.
if not (is_format and width == 0) and width != insnwidth:
error(lineno, 'definition has {0} bits'.format(width))
# Do not check for fields overlaping fields; one valid usage
# is to be able to duplicate fields via import.
fieldmask = 0
for f in flds.values():
fieldmask |= f.mask
# Fix up what we've parsed to match either a format or a pattern.
if is_format:
# Formats cannot reference formats.
if fmt:
error(lineno, 'format referencing format')
# If an argument set is given, then there should be no fields
# without a place to store it.
if arg:
for f in flds.keys():
if f not in arg.fields:
error(lineno, 'field {0} not in argument set {1}'
.format(f, arg.name))
else:
arg = infer_argument_set(flds)
if name in formats:
error(lineno, 'duplicate format name', name)
fmt = Format(name, lineno, arg, fixedbits, fixedmask,
undefmask, fieldmask, flds)
formats[name] = fmt
else:
# Patterns can reference a format ...
if fmt:
# ... but not an argument simultaneously
if arg:
error(lineno, 'pattern specifies both format and argument set')
if fixedmask & fmt.fixedmask:
error(lineno, 'pattern fixed bits overlap format fixed bits')
fieldmask |= fmt.fieldmask
fixedbits |= fmt.fixedbits
fixedmask |= fmt.fixedmask
undefmask |= fmt.undefmask
else:
(fmt, flds) = infer_format(arg, fieldmask, flds)
arg = fmt.base
for f in flds.keys():
if f not in arg.fields:
error(lineno, 'field {0} not in argument set {1}'
.format(f, arg.name))
if f in fmt.fields.keys():
error(lineno, 'field {0} set by format and pattern'.format(f))
for f in arg.fields:
if f not in flds.keys() and f not in fmt.fields.keys():
error(lineno, 'field {0} not initialized'.format(f))
pat = Pattern(name, lineno, fmt, fixedbits, fixedmask,
undefmask, fieldmask, flds)
patterns.append(pat)
# Validate the masks that we have assembled.
if fieldmask & fixedmask:
error(lineno, 'fieldmask overlaps fixedmask (0x{0:08x} & 0x{1:08x})'
.format(fieldmask, fixedmask))
if fieldmask & undefmask:
error(lineno, 'fieldmask overlaps undefmask (0x{0:08x} & 0x{1:08x})'
.format(fieldmask, undefmask))
if fixedmask & undefmask:
error(lineno, 'fixedmask overlaps undefmask (0x{0:08x} & 0x{1:08x})'
.format(fixedmask, undefmask))
if not is_format:
allbits = fieldmask | fixedmask | undefmask
if allbits != insnmask:
error(lineno, 'bits left unspecified (0x{0:08x})'
.format(allbits ^ insnmask))
# end parse_general
def parse_file(f):
"""Parse all of the patterns within a file"""
# Read all of the lines of the file. Concatenate lines
# ending in backslash; discard empty lines and comments.
toks = []
lineno = 0
for line in f:
lineno += 1
# Discard comments
end = line.find('#')
if end >= 0:
line = line[:end]
t = line.split()
if len(toks) != 0:
# Next line after continuation
toks.extend(t)
elif len(t) == 0:
# Empty line
continue
else:
toks = t
# Continuation?
if toks[-1] == '\\':
toks.pop()
continue
if len(toks) < 2:
error(lineno, 'short line')
name = toks[0]
del toks[0]
# Determine the type of object needing to be parsed.
if name[0] == '%':
parse_field(lineno, name[1:], toks)
elif name[0] == '&':
parse_arguments(lineno, name[1:], toks)
elif name[0] == '@':
parse_generic(lineno, True, name[1:], toks)
else:
parse_generic(lineno, False, name, toks)
toks = []
# end parse_file
class Tree:
"""Class representing a node in a decode tree"""
def __init__(self, fm, tm):
self.fixedmask = fm
self.thismask = tm
self.subs = []
self.base = None
def str1(self, i):
ind = str_indent(i)
r = '{0}{1:08x}'.format(ind, self.fixedmask)
if self.format:
r += ' ' + self.format.name
r += ' [\n'
for (b, s) in self.subs:
r += '{0} {1:08x}:\n'.format(ind, b)
r += s.str1(i + 4) + '\n'
r += ind + ']'
return r
def __str__(self):
return self.str1(0)
def output_code(self, i, extracted, outerbits, outermask):
ind = str_indent(i)
# If we identified all nodes below have the same format,
# extract the fields now.
if not extracted and self.base:
output(ind, self.base.extract_name(),
'(&u.f_', self.base.base.name, ', insn);\n')
extracted = True
# Attempt to aid the compiler in producing compact switch statements.
# If the bits in the mask are contiguous, extract them.
sh = is_contiguous(self.thismask)
if sh > 0:
# Propagate SH down into the local functions.
def str_switch(b, sh=sh):
return '(insn >> {0}) & 0x{1:x}'.format(sh, b >> sh)
def str_case(b, sh=sh):
return '0x{0:x}'.format(b >> sh)
else:
def str_switch(b):
return 'insn & 0x{0:08x}'.format(b)
def str_case(b):
return '0x{0:08x}'.format(b)
output(ind, 'switch (', str_switch(self.thismask), ') {\n')
for b, s in sorted(self.subs):
assert (self.thismask & ~s.fixedmask) == 0
innermask = outermask | self.thismask
innerbits = outerbits | b
output(ind, 'case ', str_case(b), ':\n')
output(ind, ' /* ',
str_match_bits(innerbits, innermask), ' */\n')
s.output_code(i + 4, extracted, innerbits, innermask)
output(ind, '}\n')
output(ind, 'return false;\n')
# end Tree
def build_tree(pats, outerbits, outermask):
# Find the intersection of all remaining fixedmask.
innermask = ~outermask
for i in pats:
innermask &= i.fixedmask
if innermask == 0:
pnames = []
for p in pats:
pnames.append(p.name + ':' + str(p.lineno))
error(pats[0].lineno, 'overlapping patterns:', pnames)
fullmask = outermask | innermask
# Sort each element of pats into the bin selected by the mask.
bins = {}
for i in pats:
fb = i.fixedbits & innermask
if fb in bins:
bins[fb].append(i)
else:
bins[fb] = [i]
# We must recurse if any bin has more than one element or if
# the single element in the bin has not been fully matched.
t = Tree(fullmask, innermask)
for b, l in bins.items():
s = l[0]
if len(l) > 1 or s.fixedmask & ~fullmask != 0:
s = build_tree(l, b | outerbits, fullmask)
t.subs.append((b, s))
return t
# end build_tree
def prop_format(tree):
"""Propagate Format objects into the decode tree"""
# Depth first search.
for (b, s) in tree.subs:
if isinstance(s, Tree):
prop_format(s)
# If all entries in SUBS have the same format, then
# propagate that into the tree.
f = None
for (b, s) in tree.subs:
if f is None:
f = s.base
if f is None:
return
if f is not s.base:
return
tree.base = f
# end prop_format
def main():
global arguments
global formats
global patterns
global translate_scope
global translate_prefix
global output_fd
global output_file
global input_file
global insnwidth
global insntype
global insnmask
global decode_function
decode_scope = 'static '
long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=']
try:
(opts, args) = getopt.getopt(sys.argv[1:], 'o:w:', long_opts)
except getopt.GetoptError as err:
error(0, err)
for o, a in opts:
if o in ('-o', '--output'):
output_file = a
elif o == '--decode':
decode_function = a
decode_scope = ''
elif o == '--translate':
translate_prefix = a
translate_scope = ''
elif o in ('-w', '--insnwidth'):
insnwidth = int(a)
if insnwidth == 16:
insntype = 'uint16_t'
insnmask = 0xffff
elif insnwidth != 32:
error(0, 'cannot handle insns of width', insnwidth)
else:
assert False, 'unhandled option'
if len(args) < 1:
error(0, 'missing input file')
input_file = args[0]
f = open(input_file, 'r')
parse_file(f)
f.close()
t = build_tree(patterns, 0, 0)
prop_format(t)
if output_file:
output_fd = open(output_file, 'w')
else:
output_fd = sys.stdout
output_autogen()
for n in sorted(arguments.keys()):
f = arguments[n]
f.output_def()
# A single translate function can be invoked for different patterns.
# Make sure that the argument sets are the same, and declare the
# function only once.
out_pats = {}
for i in patterns:
if i.name in out_pats:
p = out_pats[i.name]
if i.base.base != p.base.base:
error(0, i.name, ' has conflicting argument sets')
else:
i.output_decl()
out_pats[i.name] = i
output('\n')
for n in sorted(formats.keys()):
f = formats[n]
f.output_extract()
output(decode_scope, 'bool ', decode_function,
'(DisasContext *ctx, ', insntype, ' insn)\n{\n')
i4 = str_indent(4)
output(i4, 'union {\n')
for n in sorted(arguments.keys()):
f = arguments[n]
output(i4, i4, f.struct_name(), ' f_', f.name, ';\n')
output(i4, '} u;\n\n')
t.output_code(4, False, 0, 0)
output('}\n')
if output_file:
output_fd.close()
# end main
if __name__ == '__main__':
main()