unicorn/qemu/scripts/decodetree.py
Richard Henderson 800c9db9c9
decodetree: Allow multiple input files
While it would be possible to concatenate input files with make,
passing the original input files to decodetree.py allows us to
generate error messages which allows compilation environments
(read: emacs) to next-error to the correct input file.

Backports commit 6699ae6a8e74381583622502db8bd47fac381c9e from qemu
2018-11-11 08:28:55 -05:00

1078 lines
31 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2018 Linaro Limited
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, see <http://www.gnu.org/licenses/>.
#
#
# Generate a decoding tree from a specification file.
#
# The tree is built from instruction "patterns". A pattern may represent
# a single architectural instruction or a group of same, depending on what
# is convenient for further processing.
#
# Each pattern has "fixedbits" & "fixedmask", the combination of which
# describes the condition under which the pattern is matched:
#
# (insn & fixedmask) == fixedbits
#
# Each pattern may have "fields", which are extracted from the insn and
# passed along to the translator. Examples of such are registers,
# immediates, and sub-opcodes.
#
# In support of patterns, one may declare fields, argument sets, and
# formats, each of which may be re-used to simplify further definitions.
#
# *** Field syntax:
#
# field_def := '%' identifier ( unnamed_field )+ ( !function=identifier )?
# unnamed_field := number ':' ( 's' ) number
#
# For unnamed_field, the first number is the least-significant bit position of
# the field and the second number is the length of the field. If the 's' is
# present, the field is considered signed. If multiple unnamed_fields are
# present, they are concatenated. In this way one can define disjoint fields.
#
# If !function is specified, the concatenated result is passed through the
# named function, taking and returning an integral value.
#
# FIXME: the fields of the structure into which this result will be stored
# is restricted to "int". Which means that we cannot expand 64-bit items.
#
# Field examples:
#
# %disp 0:s16 -- sextract(i, 0, 16)
# %imm9 16:6 10:3 -- extract(i, 16, 6) << 3 | extract(i, 10, 3)
# %disp12 0:s1 1:1 2:10 -- sextract(i, 0, 1) << 11
# | extract(i, 1, 1) << 10
# | extract(i, 2, 10)
# %shimm8 5:s8 13:1 !function=expand_shimm8
# -- expand_shimm8(sextract(i, 5, 8) << 1
# | extract(i, 13, 1))
#
# *** Argument set syntax:
#
# args_def := '&' identifier ( args_elt )+ ( !extern )?
# args_elt := identifier
#
# Each args_elt defines an argument within the argument set.
# Each argument set will be rendered as a C structure "arg_$name"
# with each of the fields being one of the member arguments.
#
# If !extern is specified, the backing structure is assumed to
# have been already declared, typically via a second decoder.
#
# Argument set examples:
#
# &reg3 ra rb rc
# &loadstore reg base offset
#
# *** Format syntax:
#
# fmt_def := '@' identifier ( fmt_elt )+
# fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
# fixedbit_elt := [01.-]+
# field_elt := identifier ':' 's'? number
# field_ref := '%' identifier | identifier '=' '%' identifier
# args_ref := '&' identifier
#
# Defining a format is a handy way to avoid replicating groups of fields
# across many instruction patterns.
#
# A fixedbit_elt describes a contiguous sequence of bits that must
# be 1, 0, [.-] for don't care. The difference between '.' and '-'
# is that '.' means that the bit will be covered with a field or a
# final [01] from the pattern, and '-' means that the bit is really
# ignored by the cpu and will not be specified.
#
# A field_elt describes a simple field only given a width; the position of
# the field is implied by its position with respect to other fixedbit_elt
# and field_elt.
#
# If any fixedbit_elt or field_elt appear then all bits must be defined.
# Padding with a fixedbit_elt of all '.' is an easy way to accomplish that.
#
# A field_ref incorporates a field by reference. This is the only way to
# add a complex field to a format. A field may be renamed in the process
# via assignment to another identifier. This is intended to allow the
# same argument set be used with disjoint named fields.
#
# A single args_ref may specify an argument set to use for the format.
# The set of fields in the format must be a subset of the arguments in
# the argument set. If an argument set is not specified, one will be
# inferred from the set of fields.
#
# It is recommended, but not required, that all field_ref and args_ref
# appear at the end of the line, not interleaving with fixedbit_elf or
# field_elt.
#
# Format examples:
#
# @opr ...... ra:5 rb:5 ... 0 ....... rc:5
# @opi ...... ra:5 lit:8 1 ....... rc:5
#
# *** Pattern syntax:
#
# pat_def := identifier ( pat_elt )+
# pat_elt := fixedbit_elt | field_elt | field_ref
# | args_ref | fmt_ref | const_elt
# fmt_ref := '@' identifier
# const_elt := identifier '=' number
#
# The fixedbit_elt and field_elt specifiers are unchanged from formats.
# A pattern that does not specify a named format will have one inferred
# from a referenced argument set (if present) and the set of fields.
#
# A const_elt allows a argument to be set to a constant value. This may
# come in handy when fields overlap between patterns and one has to
# include the values in the fixedbit_elt instead.
#
# The decoder will call a translator function for each pattern matched.
#
# Pattern examples:
#
# addl_r 010000 ..... ..... .... 0000000 ..... @opr
# addl_i 010000 ..... ..... .... 0000000 ..... @opi
#
# which will, in part, invoke
#
# trans_addl_r(ctx, &arg_opr, insn)
# and
# trans_addl_i(ctx, &arg_opi, insn)
#
import os
import re
import sys
import getopt
insnwidth = 32
insnmask = 0xffffffff
fields = {}
arguments = {}
formats = {}
patterns = []
translate_prefix = 'trans'
translate_scope = 'static '
input_file = ''
output_file = None
output_fd = None
insntype = 'uint32_t'
decode_function = 'decode'
re_ident = '[a-zA-Z][a-zA-Z0-9_]*'
def error_with_file(file, lineno, *args):
"""Print an error message from file:line and args and exit."""
global output_file
global output_fd
if lineno:
r = '{0}:{1}: error:'.format(file, lineno)
elif input_file:
r = '{0}: error:'.format(file)
else:
r = 'error:'
for a in args:
r += ' ' + str(a)
r += '\n'
sys.stderr.write(r)
if output_file and output_fd:
output_fd.close()
os.remove(output_file)
exit(1)
def error(lineno, *args):
error_with_file(input_file, lineno, args)
def output(*args):
global output_fd
for a in args:
output_fd.write(a)
if sys.version_info >= (3, 0):
re_fullmatch = re.fullmatch
else:
def re_fullmatch(pat, str):
return re.match('^' + pat + '$', str)
def output_autogen():
output('/* This file is autogenerated by scripts/decodetree.py. */\n\n')
def str_indent(c):
"""Return a string with C spaces"""
return ' ' * c
def str_fields(fields):
"""Return a string uniquely identifing FIELDS"""
r = ''
for n in sorted(fields.keys()):
r += '_' + n
return r[1:]
def str_match_bits(bits, mask):
"""Return a string pretty-printing BITS/MASK"""
global insnwidth
i = 1 << (insnwidth - 1)
space = 0x01010100
r = ''
while i != 0:
if i & mask:
if i & bits:
r += '1'
else:
r += '0'
else:
r += '.'
if i & space:
r += ' '
i >>= 1
return r
def is_pow2(x):
"""Return true iff X is equal to a power of 2."""
return (x & (x - 1)) == 0
def ctz(x):
"""Return the number of times 2 factors into X."""
r = 0
while ((x >> r) & 1) == 0:
r += 1
return r
def is_contiguous(bits):
shift = ctz(bits)
if is_pow2((bits >> shift) + 1):
return shift
else:
return -1
def eq_fields_for_args(flds_a, flds_b):
if len(flds_a) != len(flds_b):
return False
for k, a in flds_a.items():
if k not in flds_b:
return False
return True
def eq_fields_for_fmts(flds_a, flds_b):
if len(flds_a) != len(flds_b):
return False
for k, a in flds_a.items():
if k not in flds_b:
return False
b = flds_b[k]
if a.__class__ != b.__class__ or a != b:
return False
return True
class Field:
"""Class representing a simple instruction field"""
def __init__(self, sign, pos, len):
self.sign = sign
self.pos = pos
self.len = len
self.mask = ((1 << len) - 1) << pos
def __str__(self):
if self.sign:
s = 's'
else:
s = ''
return str(self.pos) + ':' + s + str(self.len)
def str_extract(self):
if self.sign:
extr = 'sextract32'
else:
extr = 'extract32'
return '{0}(insn, {1}, {2})'.format(extr, self.pos, self.len)
def __eq__(self, other):
return self.sign == other.sign and self.sign == other.sign
def __ne__(self, other):
return not self.__eq__(other)
# end Field
class MultiField:
"""Class representing a compound instruction field"""
def __init__(self, subs, mask):
self.subs = subs
self.sign = subs[0].sign
self.mask = mask
def __str__(self):
return str(self.subs)
def str_extract(self):
ret = '0'
pos = 0
for f in reversed(self.subs):
if pos == 0:
ret = f.str_extract()
else:
ret = 'deposit32({0}, {1}, {2}, {3})' \
.format(ret, pos, 32 - pos, f.str_extract())
pos += f.len
return ret
def __ne__(self, other):
if len(self.subs) != len(other.subs):
return True
for a, b in zip(self.subs, other.subs):
if a.__class__ != b.__class__ or a != b:
return True
return False
def __eq__(self, other):
return not self.__ne__(other)
# end MultiField
class ConstField:
"""Class representing an argument field with constant value"""
def __init__(self, value):
self.value = value
self.mask = 0
self.sign = value < 0
def __str__(self):
return str(self.value)
def str_extract(self):
return str(self.value)
def __cmp__(self, other):
return self.value - other.value
# end ConstField
class FunctionField:
"""Class representing a field passed through an expander"""
def __init__(self, func, base):
self.mask = base.mask
self.sign = base.sign
self.base = base
self.func = func
def __str__(self):
return self.func + '(' + str(self.base) + ')'
def str_extract(self):
return self.func + '(' + self.base.str_extract() + ')'
def __eq__(self, other):
return self.func == other.func and self.base == other.base
def __ne__(self, other):
return not self.__eq__(other)
# end FunctionField
class Arguments:
"""Class representing the extracted fields of a format"""
def __init__(self, nm, flds, extern):
self.name = nm
self.extern = extern
self.fields = sorted(flds)
def __str__(self):
return self.name + ' ' + str(self.fields)
def struct_name(self):
return 'arg_' + self.name
def output_def(self):
if not self.extern:
output('typedef struct {\n')
for n in self.fields:
output(' int ', n, ';\n')
output('} ', self.struct_name(), ';\n\n')
# end Arguments
class General:
"""Common code between instruction formats and instruction patterns"""
def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds):
self.name = name
self.file = input_file
self.lineno = lineno
self.base = base
self.fixedbits = fixb
self.fixedmask = fixm
self.undefmask = udfm
self.fieldmask = fldm
self.fields = flds
def __str__(self):
r = self.name
if self.base:
r = r + ' ' + self.base.name
else:
r = r + ' ' + str(self.fields)
r = r + ' ' + str_match_bits(self.fixedbits, self.fixedmask)
return r
def str1(self, i):
return str_indent(i) + self.__str__()
# end General
class Format(General):
"""Class representing an instruction format"""
def extract_name(self):
return 'extract_' + self.name
def output_extract(self):
output('static void ', self.extract_name(), '(',
self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n')
for n, f in self.fields.items():
output(' a->', n, ' = ', f.str_extract(), ';\n')
output('}\n\n')
# end Format
class Pattern(General):
"""Class representing an instruction pattern"""
def output_decl(self):
global translate_scope
global translate_prefix
output('typedef ', self.base.base.struct_name(),
' arg_', self.name, ';\n')
output(translate_scope, 'bool ', translate_prefix, '_', self.name,
'(DisasContext *ctx, arg_', self.name, ' *a);\n')
def output_code(self, i, extracted, outerbits, outermask):
global translate_prefix
ind = str_indent(i)
arg = self.base.base.name
output(ind, '/* ', self.file, ':', str(self.lineno), ' */\n')
if not extracted:
output(ind, self.base.extract_name(), '(&u.f_', arg, ', insn);\n')
for n, f in self.fields.items():
output(ind, 'u.f_', arg, '.', n, ' = ', f.str_extract(), ';\n')
output(ind, 'return ', translate_prefix, '_', self.name,
'(ctx, &u.f_', arg, ');\n')
# end Pattern
def parse_field(lineno, name, toks):
"""Parse one instruction field from TOKS at LINENO"""
global fields
global re_ident
global insnwidth
# A "simple" field will have only one entry;
# a "multifield" will have several.
subs = []
width = 0
func = None
for t in toks:
if re_fullmatch('!function=' + re_ident, t):
if func:
error(lineno, 'duplicate function')
func = t.split('=')
func = func[1]
continue
if re_fullmatch('[0-9]+:s[0-9]+', t):
# Signed field extract
subtoks = t.split(':s')
sign = True
elif re_fullmatch('[0-9]+:[0-9]+', t):
# Unsigned field extract
subtoks = t.split(':')
sign = False
else:
error(lineno, 'invalid field token "{0}"'.format(t))
po = int(subtoks[0])
le = int(subtoks[1])
if po + le > insnwidth:
error(lineno, 'field {0} too large'.format(t))
f = Field(sign, po, le)
subs.append(f)
width += le
if width > insnwidth:
error(lineno, 'field too large')
if len(subs) == 1:
f = subs[0]
else:
mask = 0
for s in subs:
if mask & s.mask:
error(lineno, 'field components overlap')
mask |= s.mask
f = MultiField(subs, mask)
if func:
f = FunctionField(func, f)
if name in fields:
error(lineno, 'duplicate field', name)
fields[name] = f
# end parse_field
def parse_arguments(lineno, name, toks):
"""Parse one argument set from TOKS at LINENO"""
global arguments
global re_ident
flds = []
extern = False
for t in toks:
if re_fullmatch('!extern', t):
extern = True
continue
if not re_fullmatch(re_ident, t):
error(lineno, 'invalid argument set token "{0}"'.format(t))
if t in flds:
error(lineno, 'duplicate argument "{0}"'.format(t))
flds.append(t)
if name in arguments:
error(lineno, 'duplicate argument set', name)
arguments[name] = Arguments(name, flds, extern)
# end parse_arguments
def lookup_field(lineno, name):
global fields
if name in fields:
return fields[name]
error(lineno, 'undefined field', name)
def add_field(lineno, flds, new_name, f):
if new_name in flds:
error(lineno, 'duplicate field', new_name)
flds[new_name] = f
return flds
def add_field_byname(lineno, flds, new_name, old_name):
return add_field(lineno, flds, new_name, lookup_field(lineno, old_name))
def infer_argument_set(flds):
global arguments
global decode_function
for arg in arguments.values():
if eq_fields_for_args(flds, arg.fields):
return arg
name = decode_function + str(len(arguments))
arg = Arguments(name, flds.keys(), False)
arguments[name] = arg
return arg
def infer_format(arg, fieldmask, flds):
global arguments
global formats
global decode_function
const_flds = {}
var_flds = {}
for n, c in flds.items():
if c is ConstField:
const_flds[n] = c
else:
var_flds[n] = c
# Look for an existing format with the same argument set and fields
for fmt in formats.values():
if arg and fmt.base != arg:
continue
if fieldmask != fmt.fieldmask:
continue
if not eq_fields_for_fmts(flds, fmt.fields):
continue
return (fmt, const_flds)
name = decode_function + '_Fmt_' + str(len(formats))
if not arg:
arg = infer_argument_set(flds)
fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds)
formats[name] = fmt
return (fmt, const_flds)
# end infer_format
def parse_generic(lineno, is_format, name, toks):
"""Parse one instruction format from TOKS at LINENO"""
global fields
global arguments
global formats
global patterns
global re_ident
global insnwidth
global insnmask
fixedmask = 0
fixedbits = 0
undefmask = 0
width = 0
flds = {}
arg = None
fmt = None
for t in toks:
# '&Foo' gives a format an explcit argument set.
if t[0] == '&':
tt = t[1:]
if arg:
error(lineno, 'multiple argument sets')
if tt in arguments:
arg = arguments[tt]
else:
error(lineno, 'undefined argument set', t)
continue
# '@Foo' gives a pattern an explicit format.
if t[0] == '@':
tt = t[1:]
if fmt:
error(lineno, 'multiple formats')
if tt in formats:
fmt = formats[tt]
else:
error(lineno, 'undefined format', t)
continue
# '%Foo' imports a field.
if t[0] == '%':
tt = t[1:]
flds = add_field_byname(lineno, flds, tt, tt)
continue
# 'Foo=%Bar' imports a field with a different name.
if re_fullmatch(re_ident + '=%' + re_ident, t):
(fname, iname) = t.split('=%')
flds = add_field_byname(lineno, flds, fname, iname)
continue
# 'Foo=number' sets an argument field to a constant value
if re_fullmatch(re_ident + '=[0-9]+', t):
(fname, value) = t.split('=')
value = int(value)
flds = add_field(lineno, flds, fname, ConstField(value))
continue
# Pattern of 0s, 1s, dots and dashes indicate required zeros,
# required ones, or dont-cares.
if re_fullmatch('[01.-]+', t):
shift = len(t)
fms = t.replace('0', '1')
fms = fms.replace('.', '0')
fms = fms.replace('-', '0')
fbs = t.replace('.', '0')
fbs = fbs.replace('-', '0')
ubm = t.replace('1', '0')
ubm = ubm.replace('.', '0')
ubm = ubm.replace('-', '1')
fms = int(fms, 2)
fbs = int(fbs, 2)
ubm = int(ubm, 2)
fixedbits = (fixedbits << shift) | fbs
fixedmask = (fixedmask << shift) | fms
undefmask = (undefmask << shift) | ubm
# Otherwise, fieldname:fieldwidth
elif re_fullmatch(re_ident + ':s?[0-9]+', t):
(fname, flen) = t.split(':')
sign = False
if flen[0] == 's':
sign = True
flen = flen[1:]
shift = int(flen, 10)
f = Field(sign, insnwidth - width - shift, shift)
flds = add_field(lineno, flds, fname, f)
fixedbits <<= shift
fixedmask <<= shift
undefmask <<= shift
else:
error(lineno, 'invalid token "{0}"'.format(t))
width += shift
# We should have filled in all of the bits of the instruction.
if not (is_format and width == 0) and width != insnwidth:
error(lineno, 'definition has {0} bits'.format(width))
# Do not check for fields overlaping fields; one valid usage
# is to be able to duplicate fields via import.
fieldmask = 0
for f in flds.values():
fieldmask |= f.mask
# Fix up what we've parsed to match either a format or a pattern.
if is_format:
# Formats cannot reference formats.
if fmt:
error(lineno, 'format referencing format')
# If an argument set is given, then there should be no fields
# without a place to store it.
if arg:
for f in flds.keys():
if f not in arg.fields:
error(lineno, 'field {0} not in argument set {1}'
.format(f, arg.name))
else:
arg = infer_argument_set(flds)
if name in formats:
error(lineno, 'duplicate format name', name)
fmt = Format(name, lineno, arg, fixedbits, fixedmask,
undefmask, fieldmask, flds)
formats[name] = fmt
else:
# Patterns can reference a format ...
if fmt:
# ... but not an argument simultaneously
if arg:
error(lineno, 'pattern specifies both format and argument set')
if fixedmask & fmt.fixedmask:
error(lineno, 'pattern fixed bits overlap format fixed bits')
fieldmask |= fmt.fieldmask
fixedbits |= fmt.fixedbits
fixedmask |= fmt.fixedmask
undefmask |= fmt.undefmask
else:
(fmt, flds) = infer_format(arg, fieldmask, flds)
arg = fmt.base
for f in flds.keys():
if f not in arg.fields:
error(lineno, 'field {0} not in argument set {1}'
.format(f, arg.name))
if f in fmt.fields.keys():
error(lineno, 'field {0} set by format and pattern'.format(f))
for f in arg.fields:
if f not in flds.keys() and f not in fmt.fields.keys():
error(lineno, 'field {0} not initialized'.format(f))
pat = Pattern(name, lineno, fmt, fixedbits, fixedmask,
undefmask, fieldmask, flds)
patterns.append(pat)
# Validate the masks that we have assembled.
if fieldmask & fixedmask:
error(lineno, 'fieldmask overlaps fixedmask (0x{0:08x} & 0x{1:08x})'
.format(fieldmask, fixedmask))
if fieldmask & undefmask:
error(lineno, 'fieldmask overlaps undefmask (0x{0:08x} & 0x{1:08x})'
.format(fieldmask, undefmask))
if fixedmask & undefmask:
error(lineno, 'fixedmask overlaps undefmask (0x{0:08x} & 0x{1:08x})'
.format(fixedmask, undefmask))
if not is_format:
allbits = fieldmask | fixedmask | undefmask
if allbits != insnmask:
error(lineno, 'bits left unspecified (0x{0:08x})'
.format(allbits ^ insnmask))
# end parse_general
def parse_file(f):
"""Parse all of the patterns within a file"""
# Read all of the lines of the file. Concatenate lines
# ending in backslash; discard empty lines and comments.
toks = []
lineno = 0
for line in f:
lineno += 1
# Discard comments
end = line.find('#')
if end >= 0:
line = line[:end]
t = line.split()
if len(toks) != 0:
# Next line after continuation
toks.extend(t)
elif len(t) == 0:
# Empty line
continue
else:
toks = t
# Continuation?
if toks[-1] == '\\':
toks.pop()
continue
if len(toks) < 2:
error(lineno, 'short line')
name = toks[0]
del toks[0]
# Determine the type of object needing to be parsed.
if name[0] == '%':
parse_field(lineno, name[1:], toks)
elif name[0] == '&':
parse_arguments(lineno, name[1:], toks)
elif name[0] == '@':
parse_generic(lineno, True, name[1:], toks)
else:
parse_generic(lineno, False, name, toks)
toks = []
# end parse_file
class Tree:
"""Class representing a node in a decode tree"""
def __init__(self, fm, tm):
self.fixedmask = fm
self.thismask = tm
self.subs = []
self.base = None
def str1(self, i):
ind = str_indent(i)
r = '{0}{1:08x}'.format(ind, self.fixedmask)
if self.format:
r += ' ' + self.format.name
r += ' [\n'
for (b, s) in self.subs:
r += '{0} {1:08x}:\n'.format(ind, b)
r += s.str1(i + 4) + '\n'
r += ind + ']'
return r
def __str__(self):
return self.str1(0)
def output_code(self, i, extracted, outerbits, outermask):
ind = str_indent(i)
# If we identified all nodes below have the same format,
# extract the fields now.
if not extracted and self.base:
output(ind, self.base.extract_name(),
'(&u.f_', self.base.base.name, ', insn);\n')
extracted = True
# Attempt to aid the compiler in producing compact switch statements.
# If the bits in the mask are contiguous, extract them.
sh = is_contiguous(self.thismask)
if sh > 0:
# Propagate SH down into the local functions.
def str_switch(b, sh=sh):
return '(insn >> {0}) & 0x{1:x}'.format(sh, b >> sh)
def str_case(b, sh=sh):
return '0x{0:x}'.format(b >> sh)
else:
def str_switch(b):
return 'insn & 0x{0:08x}'.format(b)
def str_case(b):
return '0x{0:08x}'.format(b)
output(ind, 'switch (', str_switch(self.thismask), ') {\n')
for b, s in sorted(self.subs):
assert (self.thismask & ~s.fixedmask) == 0
innermask = outermask | self.thismask
innerbits = outerbits | b
output(ind, 'case ', str_case(b), ':\n')
output(ind, ' /* ',
str_match_bits(innerbits, innermask), ' */\n')
s.output_code(i + 4, extracted, innerbits, innermask)
output(ind, '}\n')
output(ind, 'return false;\n')
# end Tree
def build_tree(pats, outerbits, outermask):
# Find the intersection of all remaining fixedmask.
innermask = ~outermask
for i in pats:
innermask &= i.fixedmask
if innermask == 0:
pnames = []
for p in pats:
pnames.append(p.name + ':' + p.file + ':' + str(p.lineno))
error_with_file(pats[0].file, pats[0].lineno,
'overlapping patterns:', pnames)
fullmask = outermask | innermask
# Sort each element of pats into the bin selected by the mask.
bins = {}
for i in pats:
fb = i.fixedbits & innermask
if fb in bins:
bins[fb].append(i)
else:
bins[fb] = [i]
# We must recurse if any bin has more than one element or if
# the single element in the bin has not been fully matched.
t = Tree(fullmask, innermask)
for b, l in bins.items():
s = l[0]
if len(l) > 1 or s.fixedmask & ~fullmask != 0:
s = build_tree(l, b | outerbits, fullmask)
t.subs.append((b, s))
return t
# end build_tree
def prop_format(tree):
"""Propagate Format objects into the decode tree"""
# Depth first search.
for (b, s) in tree.subs:
if isinstance(s, Tree):
prop_format(s)
# If all entries in SUBS have the same format, then
# propagate that into the tree.
f = None
for (b, s) in tree.subs:
if f is None:
f = s.base
if f is None:
return
if f is not s.base:
return
tree.base = f
# end prop_format
def main():
global arguments
global formats
global patterns
global translate_scope
global translate_prefix
global output_fd
global output_file
global input_file
global insnwidth
global insntype
global insnmask
global decode_function
decode_scope = 'static '
long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=']
try:
(opts, args) = getopt.getopt(sys.argv[1:], 'o:w:', long_opts)
except getopt.GetoptError as err:
error(0, err)
for o, a in opts:
if o in ('-o', '--output'):
output_file = a
elif o == '--decode':
decode_function = a
decode_scope = ''
elif o == '--translate':
translate_prefix = a
translate_scope = ''
elif o in ('-w', '--insnwidth'):
insnwidth = int(a)
if insnwidth == 16:
insntype = 'uint16_t'
insnmask = 0xffff
elif insnwidth != 32:
error(0, 'cannot handle insns of width', insnwidth)
else:
assert False, 'unhandled option'
if len(args) < 1:
error(0, 'missing input file')
for filename in args:
input_file = filename
f = open(filename, 'r')
parse_file(f)
f.close()
t = build_tree(patterns, 0, 0)
prop_format(t)
if output_file:
output_fd = open(output_file, 'w')
else:
output_fd = sys.stdout
output_autogen()
for n in sorted(arguments.keys()):
f = arguments[n]
f.output_def()
# A single translate function can be invoked for different patterns.
# Make sure that the argument sets are the same, and declare the
# function only once.
out_pats = {}
for i in patterns:
if i.name in out_pats:
p = out_pats[i.name]
if i.base.base != p.base.base:
error(0, i.name, ' has conflicting argument sets')
else:
i.output_decl()
out_pats[i.name] = i
output('\n')
for n in sorted(formats.keys()):
f = formats[n]
f.output_extract()
output(decode_scope, 'bool ', decode_function,
'(DisasContext *ctx, ', insntype, ' insn)\n{\n')
i4 = str_indent(4)
output(i4, 'union {\n')
for n in sorted(arguments.keys()):
f = arguments[n]
output(i4, i4, f.struct_name(), ' f_', f.name, ';\n')
output(i4, '} u;\n\n')
t.output_code(4, False, 0, 0)
output('}\n')
if output_file:
output_fd.close()
# end main
if __name__ == '__main__':
main()