unicorn/qemu/target/arm/cpu64.c
Peter Maydell aca671b3b1
target-arm: Enable EL2 feature bit on A53 and A57
Enable the ARM_FEATURE_EL2 bit on Cortex-A52 and
Cortex-A57, since this is all now sufficiently implemented
to work with the GICv3. We provide the usual CPU property
to disable it for backwards compatibility with the older
virt boards.

In this commit, we disable the EL2 feature on the
virt and ZynpMP boards, so there is no overall effect.
Another commit will expose a board-level property to
allow the user to enable EL2.

Backports commit c25bd18a04c8bd0f19556d719864b7b08528222d from qemu
2018-03-01 23:36:44 -05:00

296 lines
10 KiB
C

/*
* QEMU AArch64 CPU
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu-common.h"
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
static inline QEMU_UNUSED_FUNC void unset_feature(CPUARMState *env, int feature)
{
env->features &= ~(1ULL << feature);
}
#ifndef CONFIG_USER_ONLY
static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Number of processors is in [25:24]; otherwise we RAZ */
return (smp_cpus - 1) << 24;
}
#endif
static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ "L2CTLR_EL1", 0,11,0, 3,1,2, ARM_CP_STATE_AA64,
0, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, a57_a53_l2ctlr_read, arm_cp_write_ignore, },
{ "L2CTLR", 15,9,0, 0,1,2, 0,
0, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, a57_a53_l2ctlr_read, arm_cp_write_ignore, },
#endif
{ "L2ECTLR_EL1", 0,11,0, 3,1,3, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "L2ECTLR", 15,9,0, 0,1,3, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "L2ACTLR", 0,15,0, 3,1,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "CPUACTLR_EL1", 0,15,2, 3,1,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "CPUACTLR", 15,0,15, 0,0,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0, },
{ "CPUECTLR_EL1", 0,15,2, 3,1,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "CPUECTLR", 15,0,15, 0,1,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0, },
{ "CPUMERRSR_EL1", 0,15,2, 3,1,2, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "CPUMERRSR", 15,0,15, 0,2,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0 },
{ "L2MERRSR_EL1", 0,15,2, 3,1,3, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "L2MERRSR", 15,0,15, 0,3,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0 },
REGINFO_SENTINEL
};
static void aarch64_a57_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
cpu->midr = 0x411fd070;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->mvfr0 = 0x10110222;
cpu->mvfr1 = 0x12111111;
cpu->mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->id_isar0 = 0x02101110;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232042;
cpu->id_isar3 = 0x01112131;
cpu->id_isar4 = 0x00011142;
cpu->id_isar5 = 0x00011121;
cpu->id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->pmceid0 = 0x00000000;
cpu->pmceid1 = 0x00000000;
cpu->id_aa64isar0 = 0x00011120;
cpu->id_aa64mmfr0 = 0x00001124;
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
}
static void aarch64_a53_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,cortex-a53";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
cpu->midr = 0x410fd034;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->mvfr0 = 0x10110222;
cpu->mvfr1 = 0x12111111;
cpu->mvfr2 = 0x00000043;
cpu->ctr = 0x84448004; /* L1Ip = VIPT */
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->id_isar0 = 0x02101110;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232042;
cpu->id_isar3 = 0x01112131;
cpu->id_isar4 = 0x00011142;
cpu->id_isar5 = 0x00011121;
cpu->id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->id_aa64isar0 = 0x00011120;
cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
}
#ifdef CONFIG_USER_ONLY
static void aarch64_any_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
}
#endif
typedef struct ARMCPUInfo {
const char *name;
void (*initfn)(struct uc_struct *uc, Object *obj, void *opaque);
void (*class_init)(struct uc_struct *uc, ObjectClass *oc, void *data);
} ARMCPUInfo;
static const ARMCPUInfo aarch64_cpus[] = {
{ "cortex-a57", aarch64_a57_initfn },
{ "cortex-a53", aarch64_a53_initfn },
#ifdef CONFIG_USER_ONLY
{ "any", aarch64_any_initfn },
#endif
{ NULL }
};
static QEMU_UNUSED_FUNC bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(NULL, obj);
return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
static void aarch64_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
}
static void aarch64_cpu_finalizefn(struct uc_struct *uc, Object *obj, void *opaque)
{
}
static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
/* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
* (Otherwise we would need to use synchronize_from_tb instead.)
*/
if (is_a64(&cpu->env)) {
cpu->env.pc = value;
} else {
cpu->env.regs[15] = value;
}
}
static void aarch64_cpu_class_init(struct uc_struct *uc, ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(uc, oc);
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->set_pc = aarch64_cpu_set_pc;
}
static void aarch64_cpu_register(struct uc_struct *uc, const ARMCPUInfo *info)
{
TypeInfo type_info = { 0 };
type_info.parent = TYPE_AARCH64_CPU;
type_info.instance_size = sizeof(ARMCPU);
type_info.instance_init = info->initfn;
type_info.class_size = sizeof(ARMCPUClass);
type_info.class_init = info->class_init;
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(uc, &type_info);
g_free((void *)type_info.name);
}
void aarch64_cpu_register_types(void *opaque)
{
const ARMCPUInfo *info = aarch64_cpus;
static TypeInfo aarch64_cpu_type_info = { 0 };
aarch64_cpu_type_info.name = TYPE_AARCH64_CPU;
aarch64_cpu_type_info.parent = TYPE_ARM_CPU;
aarch64_cpu_type_info.instance_size = sizeof(ARMCPU);
aarch64_cpu_type_info.instance_init = aarch64_cpu_initfn;
aarch64_cpu_type_info.instance_finalize = aarch64_cpu_finalizefn;
aarch64_cpu_type_info.abstract = true;
aarch64_cpu_type_info.class_size = sizeof(AArch64CPUClass);
aarch64_cpu_type_info.class_init = aarch64_cpu_class_init;
type_register_static(opaque, &aarch64_cpu_type_info);
while (info->name) {
aarch64_cpu_register(opaque, info);
info++;
}
}