unicorn/qemu/tcg/mips/tcg-target.c
Nguyen Anh Quynh 344d016104 import
2015-08-21 15:04:50 +08:00

1816 lines
53 KiB
C

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008-2009 Arnaud Patard <arnaud.patard@rtp-net.org>
* Copyright (c) 2009 Aurelien Jarno <aurelien@aurel32.net>
* Based on i386/tcg-target.c - Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "tcg-be-ldst.h"
#ifdef HOST_WORDS_BIGENDIAN
# define MIPS_BE 1
#else
# define MIPS_BE 0
#endif
#define LO_OFF (MIPS_BE * 4)
#define HI_OFF (4 - LO_OFF)
#ifndef NDEBUG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"zero",
"at",
"v0",
"v1",
"a0",
"a1",
"a2",
"a3",
"t0",
"t1",
"t2",
"t3",
"t4",
"t5",
"t6",
"t7",
"s0",
"s1",
"s2",
"s3",
"s4",
"s5",
"s6",
"s7",
"t8",
"t9",
"k0",
"k1",
"gp",
"sp",
"s8",
"ra",
};
#endif
#define TCG_TMP0 TCG_REG_AT
#define TCG_TMP1 TCG_REG_T9
/* check if we really need so many registers :P */
static const TCGReg tcg_target_reg_alloc_order[] = {
/* Call saved registers. */
TCG_REG_S0,
TCG_REG_S1,
TCG_REG_S2,
TCG_REG_S3,
TCG_REG_S4,
TCG_REG_S5,
TCG_REG_S6,
TCG_REG_S7,
TCG_REG_S8,
/* Call clobbered registers. */
TCG_REG_T0,
TCG_REG_T1,
TCG_REG_T2,
TCG_REG_T3,
TCG_REG_T4,
TCG_REG_T5,
TCG_REG_T6,
TCG_REG_T7,
TCG_REG_T8,
TCG_REG_T9,
TCG_REG_V1,
TCG_REG_V0,
/* Argument registers, opposite order of allocation. */
TCG_REG_A3,
TCG_REG_A2,
TCG_REG_A1,
TCG_REG_A0,
};
static const TCGReg tcg_target_call_iarg_regs[4] = {
TCG_REG_A0,
TCG_REG_A1,
TCG_REG_A2,
TCG_REG_A3
};
static const TCGReg tcg_target_call_oarg_regs[2] = {
TCG_REG_V0,
TCG_REG_V1
};
static tcg_insn_unit *tb_ret_addr;
static inline uint32_t reloc_pc16_val(tcg_insn_unit *pc, tcg_insn_unit *target)
{
/* Let the compiler perform the right-shift as part of the arithmetic. */
ptrdiff_t disp = target - (pc + 1);
assert(disp == (int16_t)disp);
return disp & 0xffff;
}
static inline void reloc_pc16(tcg_insn_unit *pc, tcg_insn_unit *target)
{
*pc = deposit32(*pc, 0, 16, reloc_pc16_val(pc, target));
}
static inline uint32_t reloc_26_val(tcg_insn_unit *pc, tcg_insn_unit *target)
{
assert((((uintptr_t)pc ^ (uintptr_t)target) & 0xf0000000) == 0);
return ((uintptr_t)target >> 2) & 0x3ffffff;
}
static inline void reloc_26(tcg_insn_unit *pc, tcg_insn_unit *target)
{
*pc = deposit32(*pc, 0, 26, reloc_26_val(pc, target));
}
static void patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
assert(type == R_MIPS_PC16);
assert(addend == 0);
reloc_pc16(code_ptr, (tcg_insn_unit *)value);
}
#define TCG_CT_CONST_ZERO 0x100
#define TCG_CT_CONST_U16 0x200 /* Unsigned 16-bit: 0 - 0xffff. */
#define TCG_CT_CONST_S16 0x400 /* Signed 16-bit: -32768 - 32767 */
#define TCG_CT_CONST_P2M1 0x800 /* Power of 2 minus 1. */
#define TCG_CT_CONST_N16 0x1000 /* "Negatable" 16-bit: -32767 - 32767 */
static inline bool is_p2m1(tcg_target_long val)
{
return val && ((val + 1) & val) == 0;
}
/* parse target specific constraints */
static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str)
{
const char *ct_str;
ct_str = *pct_str;
switch(ct_str[0]) {
case 'r':
ct->ct |= TCG_CT_REG;
tcg_regset_set(ct->u.regs, 0xffffffff);
break;
case 'L': /* qemu_ld output arg constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set(ct->u.regs, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_V0);
break;
case 'l': /* qemu_ld input arg constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set(ct->u.regs, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_A0);
#if defined(CONFIG_SOFTMMU)
if (TARGET_LONG_BITS == 64) {
tcg_regset_reset_reg(ct->u.regs, TCG_REG_A2);
}
#endif
break;
case 'S': /* qemu_st constraint */
ct->ct |= TCG_CT_REG;
tcg_regset_set(ct->u.regs, 0xffffffff);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_A0);
#if defined(CONFIG_SOFTMMU)
if (TARGET_LONG_BITS == 32) {
tcg_regset_reset_reg(ct->u.regs, TCG_REG_A1);
} else {
tcg_regset_reset_reg(ct->u.regs, TCG_REG_A2);
tcg_regset_reset_reg(ct->u.regs, TCG_REG_A3);
}
#endif
break;
case 'I':
ct->ct |= TCG_CT_CONST_U16;
break;
case 'J':
ct->ct |= TCG_CT_CONST_S16;
break;
case 'K':
ct->ct |= TCG_CT_CONST_P2M1;
break;
case 'N':
ct->ct |= TCG_CT_CONST_N16;
break;
case 'Z':
/* We are cheating a bit here, using the fact that the register
ZERO is also the register number 0. Hence there is no need
to check for const_args in each instruction. */
ct->ct |= TCG_CT_CONST_ZERO;
break;
default:
return -1;
}
ct_str++;
*pct_str = ct_str;
return 0;
}
/* test if a constant matches the constraint */
static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
const TCGArgConstraint *arg_ct)
{
int ct;
ct = arg_ct->ct;
if (ct & TCG_CT_CONST) {
return 1;
} else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
} else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_N16) && val >= -32767 && val <= 32767) {
return 1;
} else if ((ct & TCG_CT_CONST_P2M1)
&& use_mips32r2_instructions && is_p2m1(val)) {
return 1;
}
return 0;
}
/* instruction opcodes */
typedef enum {
OPC_J = 0x02 << 26,
OPC_JAL = 0x03 << 26,
OPC_BEQ = 0x04 << 26,
OPC_BNE = 0x05 << 26,
OPC_BLEZ = 0x06 << 26,
OPC_BGTZ = 0x07 << 26,
OPC_ADDIU = 0x09 << 26,
OPC_SLTI = 0x0A << 26,
OPC_SLTIU = 0x0B << 26,
OPC_ANDI = 0x0C << 26,
OPC_ORI = 0x0D << 26,
OPC_XORI = 0x0E << 26,
OPC_LUI = 0x0F << 26,
OPC_LB = 0x20 << 26,
OPC_LH = 0x21 << 26,
OPC_LW = 0x23 << 26,
OPC_LBU = 0x24 << 26,
OPC_LHU = 0x25 << 26,
OPC_LWU = 0x27 << 26,
OPC_SB = 0x28 << 26,
OPC_SH = 0x29 << 26,
OPC_SW = 0x2B << 26,
OPC_SPECIAL = 0x00 << 26,
OPC_SLL = OPC_SPECIAL | 0x00,
OPC_SRL = OPC_SPECIAL | 0x02,
OPC_ROTR = OPC_SPECIAL | (0x01 << 21) | 0x02,
OPC_SRA = OPC_SPECIAL | 0x03,
OPC_SLLV = OPC_SPECIAL | 0x04,
OPC_SRLV = OPC_SPECIAL | 0x06,
OPC_ROTRV = OPC_SPECIAL | (0x01 << 6) | 0x06,
OPC_SRAV = OPC_SPECIAL | 0x07,
OPC_JR = OPC_SPECIAL | 0x08,
OPC_JALR = OPC_SPECIAL | 0x09,
OPC_MOVZ = OPC_SPECIAL | 0x0A,
OPC_MOVN = OPC_SPECIAL | 0x0B,
OPC_MFHI = OPC_SPECIAL | 0x10,
OPC_MFLO = OPC_SPECIAL | 0x12,
OPC_MULT = OPC_SPECIAL | 0x18,
OPC_MULTU = OPC_SPECIAL | 0x19,
OPC_DIV = OPC_SPECIAL | 0x1A,
OPC_DIVU = OPC_SPECIAL | 0x1B,
OPC_ADDU = OPC_SPECIAL | 0x21,
OPC_SUBU = OPC_SPECIAL | 0x23,
OPC_AND = OPC_SPECIAL | 0x24,
OPC_OR = OPC_SPECIAL | 0x25,
OPC_XOR = OPC_SPECIAL | 0x26,
OPC_NOR = OPC_SPECIAL | 0x27,
OPC_SLT = OPC_SPECIAL | 0x2A,
OPC_SLTU = OPC_SPECIAL | 0x2B,
OPC_REGIMM = 0x01 << 26,
OPC_BLTZ = OPC_REGIMM | (0x00 << 16),
OPC_BGEZ = OPC_REGIMM | (0x01 << 16),
OPC_SPECIAL2 = 0x1c << 26,
OPC_MUL = OPC_SPECIAL2 | 0x002,
OPC_SPECIAL3 = 0x1f << 26,
OPC_EXT = OPC_SPECIAL3 | 0x000,
OPC_INS = OPC_SPECIAL3 | 0x004,
OPC_WSBH = OPC_SPECIAL3 | 0x0a0,
OPC_SEB = OPC_SPECIAL3 | 0x420,
OPC_SEH = OPC_SPECIAL3 | 0x620,
} MIPSInsn;
/*
* Type reg
*/
static inline void tcg_out_opc_reg(TCGContext *s, MIPSInsn opc,
TCGReg rd, TCGReg rs, TCGReg rt)
{
int32_t inst;
inst = opc;
inst |= (rs & 0x1F) << 21;
inst |= (rt & 0x1F) << 16;
inst |= (rd & 0x1F) << 11;
tcg_out32(s, inst);
}
/*
* Type immediate
*/
static inline void tcg_out_opc_imm(TCGContext *s, MIPSInsn opc,
TCGReg rt, TCGReg rs, TCGArg imm)
{
int32_t inst;
inst = opc;
inst |= (rs & 0x1F) << 21;
inst |= (rt & 0x1F) << 16;
inst |= (imm & 0xffff);
tcg_out32(s, inst);
}
/*
* Type bitfield
*/
static inline void tcg_out_opc_bf(TCGContext *s, MIPSInsn opc, TCGReg rt,
TCGReg rs, int msb, int lsb)
{
int32_t inst;
inst = opc;
inst |= (rs & 0x1F) << 21;
inst |= (rt & 0x1F) << 16;
inst |= (msb & 0x1F) << 11;
inst |= (lsb & 0x1F) << 6;
tcg_out32(s, inst);
}
/*
* Type branch
*/
static inline void tcg_out_opc_br(TCGContext *s, MIPSInsn opc,
TCGReg rt, TCGReg rs)
{
/* We pay attention here to not modify the branch target by reading
the existing value and using it again. This ensure that caches and
memory are kept coherent during retranslation. */
uint16_t offset = (uint16_t)*s->code_ptr;
tcg_out_opc_imm(s, opc, rt, rs, offset);
}
/*
* Type sa
*/
static inline void tcg_out_opc_sa(TCGContext *s, MIPSInsn opc,
TCGReg rd, TCGReg rt, TCGArg sa)
{
int32_t inst;
inst = opc;
inst |= (rt & 0x1F) << 16;
inst |= (rd & 0x1F) << 11;
inst |= (sa & 0x1F) << 6;
tcg_out32(s, inst);
}
/*
* Type jump.
* Returns true if the branch was in range and the insn was emitted.
*/
static bool tcg_out_opc_jmp(TCGContext *s, MIPSInsn opc, void *target)
{
uintptr_t dest = (uintptr_t)target;
uintptr_t from = (uintptr_t)s->code_ptr + 4;
int32_t inst;
/* The pc-region branch happens within the 256MB region of
the delay slot (thus the +4). */
if ((from ^ dest) & -(1 << 28)) {
return false;
}
assert((dest & 3) == 0);
inst = opc;
inst |= (dest >> 2) & 0x3ffffff;
tcg_out32(s, inst);
return true;
}
static inline void tcg_out_nop(TCGContext *s)
{
tcg_out32(s, 0);
}
static inline void tcg_out_mov(TCGContext *s, TCGType type,
TCGReg ret, TCGReg arg)
{
/* Simple reg-reg move, optimising out the 'do nothing' case */
if (ret != arg) {
tcg_out_opc_reg(s, OPC_ADDU, ret, arg, TCG_REG_ZERO);
}
}
static inline void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg reg, tcg_target_long arg)
{
if (arg == (int16_t)arg) {
tcg_out_opc_imm(s, OPC_ADDIU, reg, TCG_REG_ZERO, arg);
} else if (arg == (uint16_t)arg) {
tcg_out_opc_imm(s, OPC_ORI, reg, TCG_REG_ZERO, arg);
} else {
tcg_out_opc_imm(s, OPC_LUI, reg, TCG_REG_ZERO, arg >> 16);
if (arg & 0xffff) {
tcg_out_opc_imm(s, OPC_ORI, reg, reg, arg & 0xffff);
}
}
}
static inline void tcg_out_bswap16(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
} else {
/* ret and arg can't be register at */
if (ret == TCG_TMP0 || arg == TCG_TMP0) {
tcg_abort();
}
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8);
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 8);
tcg_out_opc_imm(s, OPC_ANDI, ret, ret, 0xff00);
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
}
}
static inline void tcg_out_bswap16s(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
tcg_out_opc_reg(s, OPC_SEH, ret, 0, ret);
} else {
/* ret and arg can't be register at */
if (ret == TCG_TMP0 || arg == TCG_TMP0) {
tcg_abort();
}
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8);
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24);
tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16);
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
}
}
static inline void tcg_out_bswap32(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
tcg_out_opc_sa(s, OPC_ROTR, ret, ret, 16);
} else {
/* ret and arg must be different and can't be register at */
if (ret == arg || ret == TCG_TMP0 || arg == TCG_TMP0) {
tcg_abort();
}
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24);
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 24);
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP0, arg, 0xff00);
tcg_out_opc_sa(s, OPC_SLL, TCG_TMP0, TCG_TMP0, 8);
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8);
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP0, TCG_TMP0, 0xff00);
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
}
}
static inline void tcg_out_ext8s(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_SEB, ret, 0, arg);
} else {
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24);
tcg_out_opc_sa(s, OPC_SRA, ret, ret, 24);
}
}
static inline void tcg_out_ext16s(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_SEH, ret, 0, arg);
} else {
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 16);
tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16);
}
}
static void tcg_out_ldst(TCGContext *s, MIPSInsn opc, TCGReg data,
TCGReg addr, intptr_t ofs)
{
int16_t lo = ofs;
if (ofs != lo) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs - lo);
if (addr != TCG_REG_ZERO) {
tcg_out_opc_reg(s, OPC_ADDU, TCG_TMP0, TCG_TMP0, addr);
}
addr = TCG_TMP0;
}
tcg_out_opc_imm(s, opc, data, addr, lo);
}
static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, OPC_LW, arg, arg1, arg2);
}
static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, OPC_SW, arg, arg1, arg2);
}
static inline void tcg_out_addi(TCGContext *s, TCGReg reg, TCGArg val)
{
if (val == (int16_t)val) {
tcg_out_opc_imm(s, OPC_ADDIU, reg, reg, val);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, val);
tcg_out_opc_reg(s, OPC_ADDU, reg, reg, TCG_TMP0);
}
}
/* Bit 0 set if inversion required; bit 1 set if swapping required. */
#define MIPS_CMP_INV 1
#define MIPS_CMP_SWAP 2
static const uint8_t mips_cmp_map[16] = {
[TCG_COND_LT] = 0,
[TCG_COND_LTU] = 0,
[TCG_COND_GE] = MIPS_CMP_INV,
[TCG_COND_GEU] = MIPS_CMP_INV,
[TCG_COND_LE] = MIPS_CMP_INV | MIPS_CMP_SWAP,
[TCG_COND_LEU] = MIPS_CMP_INV | MIPS_CMP_SWAP,
[TCG_COND_GT] = MIPS_CMP_SWAP,
[TCG_COND_GTU] = MIPS_CMP_SWAP,
};
static void tcg_out_setcond(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg arg1, TCGReg arg2)
{
MIPSInsn s_opc = OPC_SLTU;
int cmp_map;
switch (cond) {
case TCG_COND_EQ:
if (arg2 != 0) {
tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2);
arg1 = ret;
}
tcg_out_opc_imm(s, OPC_SLTIU, ret, arg1, 1);
break;
case TCG_COND_NE:
if (arg2 != 0) {
tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2);
arg1 = ret;
}
tcg_out_opc_reg(s, OPC_SLTU, ret, TCG_REG_ZERO, arg1);
break;
case TCG_COND_LT:
case TCG_COND_GE:
case TCG_COND_LE:
case TCG_COND_GT:
s_opc = OPC_SLT;
/* FALLTHRU */
case TCG_COND_LTU:
case TCG_COND_GEU:
case TCG_COND_LEU:
case TCG_COND_GTU:
cmp_map = mips_cmp_map[cond];
if (cmp_map & MIPS_CMP_SWAP) {
TCGReg t = arg1;
arg1 = arg2;
arg2 = t;
}
tcg_out_opc_reg(s, s_opc, ret, arg1, arg2);
if (cmp_map & MIPS_CMP_INV) {
tcg_out_opc_imm(s, OPC_XORI, ret, ret, 1);
}
break;
default:
tcg_abort();
break;
}
}
static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGReg arg1,
TCGReg arg2, int label_index)
{
static const MIPSInsn b_zero[16] = {
[TCG_COND_LT] = OPC_BLTZ,
[TCG_COND_GT] = OPC_BGTZ,
[TCG_COND_LE] = OPC_BLEZ,
[TCG_COND_GE] = OPC_BGEZ,
};
TCGLabel *l;
MIPSInsn s_opc = OPC_SLTU;
MIPSInsn b_opc;
int cmp_map;
switch (cond) {
case TCG_COND_EQ:
b_opc = OPC_BEQ;
break;
case TCG_COND_NE:
b_opc = OPC_BNE;
break;
case TCG_COND_LT:
case TCG_COND_GT:
case TCG_COND_LE:
case TCG_COND_GE:
if (arg2 == 0) {
b_opc = b_zero[cond];
arg2 = arg1;
arg1 = 0;
break;
}
s_opc = OPC_SLT;
/* FALLTHRU */
case TCG_COND_LTU:
case TCG_COND_GTU:
case TCG_COND_LEU:
case TCG_COND_GEU:
cmp_map = mips_cmp_map[cond];
if (cmp_map & MIPS_CMP_SWAP) {
TCGReg t = arg1;
arg1 = arg2;
arg2 = t;
}
tcg_out_opc_reg(s, s_opc, TCG_TMP0, arg1, arg2);
b_opc = (cmp_map & MIPS_CMP_INV ? OPC_BEQ : OPC_BNE);
arg1 = TCG_TMP0;
arg2 = TCG_REG_ZERO;
break;
default:
tcg_abort();
break;
}
tcg_out_opc_br(s, b_opc, arg1, arg2);
l = &s->labels[label_index];
if (l->has_value) {
reloc_pc16(s->code_ptr - 1, l->u.value_ptr);
} else {
tcg_out_reloc(s, s->code_ptr - 1, R_MIPS_PC16, label_index, 0);
}
tcg_out_nop(s);
}
static TCGReg tcg_out_reduce_eq2(TCGContext *s, TCGReg tmp0, TCGReg tmp1,
TCGReg al, TCGReg ah,
TCGReg bl, TCGReg bh)
{
/* Merge highpart comparison into AH. */
if (bh != 0) {
if (ah != 0) {
tcg_out_opc_reg(s, OPC_XOR, tmp0, ah, bh);
ah = tmp0;
} else {
ah = bh;
}
}
/* Merge lowpart comparison into AL. */
if (bl != 0) {
if (al != 0) {
tcg_out_opc_reg(s, OPC_XOR, tmp1, al, bl);
al = tmp1;
} else {
al = bl;
}
}
/* Merge high and low part comparisons into AL. */
if (ah != 0) {
if (al != 0) {
tcg_out_opc_reg(s, OPC_OR, tmp0, ah, al);
al = tmp0;
} else {
al = ah;
}
}
return al;
}
static void tcg_out_setcond2(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh)
{
TCGReg tmp0 = TCG_TMP0;
TCGReg tmp1 = ret;
assert(ret != TCG_TMP0);
if (ret == ah || ret == bh) {
assert(ret != TCG_TMP1);
tmp1 = TCG_TMP1;
}
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
tmp1 = tcg_out_reduce_eq2(s, tmp0, tmp1, al, ah, bl, bh);
tcg_out_setcond(s, cond, ret, tmp1, TCG_REG_ZERO);
break;
default:
tcg_out_setcond(s, TCG_COND_EQ, tmp0, ah, bh);
tcg_out_setcond(s, tcg_unsigned_cond(cond), tmp1, al, bl);
tcg_out_opc_reg(s, OPC_AND, tmp1, tmp1, tmp0);
tcg_out_setcond(s, tcg_high_cond(cond), tmp0, ah, bh);
tcg_out_opc_reg(s, OPC_OR, ret, tmp1, tmp0);
break;
}
}
static void tcg_out_brcond2(TCGContext *s, TCGCond cond, TCGReg al, TCGReg ah,
TCGReg bl, TCGReg bh, int label_index)
{
TCGCond b_cond = TCG_COND_NE;
TCGReg tmp = TCG_TMP1;
/* With branches, we emit between 4 and 9 insns with 2 or 3 branches.
With setcond, we emit between 3 and 10 insns and only 1 branch,
which ought to get better branch prediction. */
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
b_cond = cond;
tmp = tcg_out_reduce_eq2(s, TCG_TMP0, TCG_TMP1, al, ah, bl, bh);
break;
default:
/* Minimize code size by preferring a compare not requiring INV. */
if (mips_cmp_map[cond] & MIPS_CMP_INV) {
cond = tcg_invert_cond(cond);
b_cond = TCG_COND_EQ;
}
tcg_out_setcond2(s, cond, tmp, al, ah, bl, bh);
break;
}
tcg_out_brcond(s, b_cond, tmp, TCG_REG_ZERO, label_index);
}
static void tcg_out_movcond(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, TCGReg c2, TCGReg v)
{
MIPSInsn m_opc = OPC_MOVN;
switch (cond) {
case TCG_COND_EQ:
m_opc = OPC_MOVZ;
/* FALLTHRU */
case TCG_COND_NE:
if (c2 != 0) {
tcg_out_opc_reg(s, OPC_XOR, TCG_TMP0, c1, c2);
c1 = TCG_TMP0;
}
break;
default:
/* Minimize code size by preferring a compare not requiring INV. */
if (mips_cmp_map[cond] & MIPS_CMP_INV) {
cond = tcg_invert_cond(cond);
m_opc = OPC_MOVZ;
}
tcg_out_setcond(s, cond, TCG_TMP0, c1, c2);
c1 = TCG_TMP0;
break;
}
tcg_out_opc_reg(s, m_opc, ret, v, c1);
}
static void tcg_out_call_int(TCGContext *s, tcg_insn_unit *arg, bool tail)
{
/* Note that the ABI requires the called function's address to be
loaded into T9, even if a direct branch is in range. */
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T9, (uintptr_t)arg);
/* But do try a direct branch, allowing the cpu better insn prefetch. */
if (tail) {
if (!tcg_out_opc_jmp(s, OPC_J, arg)) {
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_T9, 0);
}
} else {
if (!tcg_out_opc_jmp(s, OPC_JAL, arg)) {
tcg_out_opc_reg(s, OPC_JALR, TCG_REG_RA, TCG_REG_T9, 0);
}
}
}
static void tcg_out_call(TCGContext *s, tcg_insn_unit *arg)
{
tcg_out_call_int(s, arg, false);
tcg_out_nop(s);
}
#if defined(CONFIG_SOFTMMU)
static void * const qemu_ld_helpers[16] = {
[MO_UB] = helper_ret_ldub_mmu,
[MO_SB] = helper_ret_ldsb_mmu,
[MO_LEUW] = helper_le_lduw_mmu,
[MO_LESW] = helper_le_ldsw_mmu,
[MO_LEUL] = helper_le_ldul_mmu,
[MO_LEQ] = helper_le_ldq_mmu,
[MO_BEUW] = helper_be_lduw_mmu,
[MO_BESW] = helper_be_ldsw_mmu,
[MO_BEUL] = helper_be_ldul_mmu,
[MO_BEQ] = helper_be_ldq_mmu,
};
static void * const qemu_st_helpers[16] = {
[MO_UB] = helper_ret_stb_mmu,
[MO_LEUW] = helper_le_stw_mmu,
[MO_LEUL] = helper_le_stl_mmu,
[MO_LEQ] = helper_le_stq_mmu,
[MO_BEUW] = helper_be_stw_mmu,
[MO_BEUL] = helper_be_stl_mmu,
[MO_BEQ] = helper_be_stq_mmu,
};
/* Helper routines for marshalling helper function arguments into
* the correct registers and stack.
* I is where we want to put this argument, and is updated and returned
* for the next call. ARG is the argument itself.
*
* We provide routines for arguments which are: immediate, 32 bit
* value in register, 16 and 8 bit values in register (which must be zero
* extended before use) and 64 bit value in a lo:hi register pair.
*/
static int tcg_out_call_iarg_reg(TCGContext *s, int i, TCGReg arg)
{
if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[i], arg);
} else {
tcg_out_st(s, TCG_TYPE_REG, arg, TCG_REG_SP, 4 * i);
}
return i + 1;
}
static int tcg_out_call_iarg_reg8(TCGContext *s, int i, TCGReg arg)
{
TCGReg tmp = TCG_TMP0;
if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
tmp = tcg_target_call_iarg_regs[i];
}
tcg_out_opc_imm(s, OPC_ANDI, tmp, arg, 0xff);
return tcg_out_call_iarg_reg(s, i, tmp);
}
static int tcg_out_call_iarg_reg16(TCGContext *s, int i, TCGReg arg)
{
TCGReg tmp = TCG_TMP0;
if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
tmp = tcg_target_call_iarg_regs[i];
}
tcg_out_opc_imm(s, OPC_ANDI, tmp, arg, 0xffff);
return tcg_out_call_iarg_reg(s, i, tmp);
}
static int tcg_out_call_iarg_imm(TCGContext *s, int i, TCGArg arg)
{
TCGReg tmp = TCG_TMP0;
if (arg == 0) {
tmp = TCG_REG_ZERO;
} else {
if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
tmp = tcg_target_call_iarg_regs[i];
}
tcg_out_movi(s, TCG_TYPE_REG, tmp, arg);
}
return tcg_out_call_iarg_reg(s, i, tmp);
}
static int tcg_out_call_iarg_reg2(TCGContext *s, int i, TCGReg al, TCGReg ah)
{
i = (i + 1) & ~1;
i = tcg_out_call_iarg_reg(s, i, (MIPS_BE ? ah : al));
i = tcg_out_call_iarg_reg(s, i, (MIPS_BE ? al : ah));
return i;
}
/* Perform the tlb comparison operation. The complete host address is
placed in BASE. Clobbers AT, T0, A0. */
static void tcg_out_tlb_load(TCGContext *s, TCGReg base, TCGReg addrl,
TCGReg addrh, int mem_index, TCGMemOp s_bits,
tcg_insn_unit *label_ptr[2], bool is_load)
{
int cmp_off
= (is_load
? offsetof(CPUArchState, tlb_table[mem_index][0].addr_read)
: offsetof(CPUArchState, tlb_table[mem_index][0].addr_write));
int add_off = offsetof(CPUArchState, tlb_table[mem_index][0].addend);
tcg_out_opc_sa(s, OPC_SRL, TCG_REG_A0, addrl,
TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
tcg_out_opc_imm(s, OPC_ANDI, TCG_REG_A0, TCG_REG_A0,
(CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS);
tcg_out_opc_reg(s, OPC_ADDU, TCG_REG_A0, TCG_REG_A0, TCG_AREG0);
/* Compensate for very large offsets. */
if (add_off >= 0x8000) {
/* Most target env are smaller than 32k; none are larger than 64k.
Simplify the logic here merely to offset by 0x7ff0, giving us a
range just shy of 64k. Check this assumption. */
QEMU_BUILD_BUG_ON(offsetof(CPUArchState,
tlb_table[NB_MMU_MODES - 1][1])
> 0x7ff0 + 0x7fff);
tcg_out_opc_imm(s, OPC_ADDIU, TCG_REG_A0, TCG_REG_A0, 0x7ff0);
cmp_off -= 0x7ff0;
add_off -= 0x7ff0;
}
/* Load the tlb comparator. */
tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, TCG_REG_A0, cmp_off + LO_OFF);
if (TARGET_LONG_BITS == 64) {
tcg_out_opc_imm(s, OPC_LW, base, TCG_REG_A0, cmp_off + HI_OFF);
}
/* Mask the page bits, keeping the alignment bits to compare against.
In between, load the tlb addend for the fast path. */
tcg_out_movi(s, TCG_TYPE_I32, TCG_TMP1,
TARGET_PAGE_MASK | ((1 << s_bits) - 1));
tcg_out_opc_imm(s, OPC_LW, TCG_REG_A0, TCG_REG_A0, add_off);
tcg_out_opc_reg(s, OPC_AND, TCG_TMP1, TCG_TMP1, addrl);
label_ptr[0] = s->code_ptr;
tcg_out_opc_br(s, OPC_BNE, TCG_TMP1, TCG_TMP0);
if (TARGET_LONG_BITS == 64) {
/* delay slot */
tcg_out_nop(s);
label_ptr[1] = s->code_ptr;
tcg_out_opc_br(s, OPC_BNE, addrh, base);
}
/* delay slot */
tcg_out_opc_reg(s, OPC_ADDU, base, TCG_REG_A0, addrl);
}
static void add_qemu_ldst_label(TCGContext *s, int is_ld, TCGMemOp opc,
TCGReg datalo, TCGReg datahi,
TCGReg addrlo, TCGReg addrhi,
int mem_index, void *raddr,
tcg_insn_unit *label_ptr[2])
{
TCGLabelQemuLdst *label = new_ldst_label(s);
label->is_ld = is_ld;
label->opc = opc;
label->datalo_reg = datalo;
label->datahi_reg = datahi;
label->addrlo_reg = addrlo;
label->addrhi_reg = addrhi;
label->mem_index = mem_index;
label->raddr = raddr;
label->label_ptr[0] = label_ptr[0];
if (TARGET_LONG_BITS == 64) {
label->label_ptr[1] = label_ptr[1];
}
}
static void tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
TCGMemOp opc = l->opc;
TCGReg v0;
int i;
/* resolve label address */
reloc_pc16(l->label_ptr[0], s->code_ptr);
if (TARGET_LONG_BITS == 64) {
reloc_pc16(l->label_ptr[1], s->code_ptr);
}
i = 1;
if (TARGET_LONG_BITS == 64) {
i = tcg_out_call_iarg_reg2(s, i, l->addrlo_reg, l->addrhi_reg);
} else {
i = tcg_out_call_iarg_reg(s, i, l->addrlo_reg);
}
i = tcg_out_call_iarg_imm(s, i, l->mem_index);
i = tcg_out_call_iarg_imm(s, i, (intptr_t)l->raddr);
tcg_out_call_int(s, qemu_ld_helpers[opc], false);
/* delay slot */
tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
v0 = l->datalo_reg;
if ((opc & MO_SIZE) == MO_64) {
/* We eliminated V0 from the possible output registers, so it
cannot be clobbered here. So we must move V1 first. */
if (MIPS_BE) {
tcg_out_mov(s, TCG_TYPE_I32, v0, TCG_REG_V1);
v0 = l->datahi_reg;
} else {
tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_V1);
}
}
reloc_pc16(s->code_ptr, l->raddr);
tcg_out_opc_br(s, OPC_BEQ, TCG_REG_ZERO, TCG_REG_ZERO);
/* delay slot */
tcg_out_mov(s, TCG_TYPE_REG, v0, TCG_REG_V0);
}
static void tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
TCGMemOp opc = l->opc;
TCGMemOp s_bits = opc & MO_SIZE;
int i;
/* resolve label address */
reloc_pc16(l->label_ptr[0], s->code_ptr);
if (TARGET_LONG_BITS == 64) {
reloc_pc16(l->label_ptr[1], s->code_ptr);
}
i = 1;
if (TARGET_LONG_BITS == 64) {
i = tcg_out_call_iarg_reg2(s, i, l->addrlo_reg, l->addrhi_reg);
} else {
i = tcg_out_call_iarg_reg(s, i, l->addrlo_reg);
}
switch (s_bits) {
case MO_8:
i = tcg_out_call_iarg_reg8(s, i, l->datalo_reg);
break;
case MO_16:
i = tcg_out_call_iarg_reg16(s, i, l->datalo_reg);
break;
case MO_32:
i = tcg_out_call_iarg_reg(s, i, l->datalo_reg);
break;
case MO_64:
i = tcg_out_call_iarg_reg2(s, i, l->datalo_reg, l->datahi_reg);
break;
default:
tcg_abort();
}
i = tcg_out_call_iarg_imm(s, i, l->mem_index);
/* Tail call to the store helper. Thus force the return address
computation to take place in the return address register. */
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_RA, (intptr_t)l->raddr);
i = tcg_out_call_iarg_reg(s, i, TCG_REG_RA);
tcg_out_call_int(s, qemu_st_helpers[opc], true);
/* delay slot */
tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
}
#endif
static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg base, TCGMemOp opc)
{
switch (opc) {
case MO_UB:
tcg_out_opc_imm(s, OPC_LBU, datalo, base, 0);
break;
case MO_SB:
tcg_out_opc_imm(s, OPC_LB, datalo, base, 0);
break;
case MO_UW | MO_BSWAP:
tcg_out_opc_imm(s, OPC_LHU, TCG_TMP1, base, 0);
tcg_out_bswap16(s, datalo, TCG_TMP1);
break;
case MO_UW:
tcg_out_opc_imm(s, OPC_LHU, datalo, base, 0);
break;
case MO_SW | MO_BSWAP:
tcg_out_opc_imm(s, OPC_LHU, TCG_TMP1, base, 0);
tcg_out_bswap16s(s, datalo, TCG_TMP1);
break;
case MO_SW:
tcg_out_opc_imm(s, OPC_LH, datalo, base, 0);
break;
case MO_UL | MO_BSWAP:
tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, 0);
tcg_out_bswap32(s, datalo, TCG_TMP1);
break;
case MO_UL:
tcg_out_opc_imm(s, OPC_LW, datalo, base, 0);
break;
case MO_Q | MO_BSWAP:
tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, HI_OFF);
tcg_out_bswap32(s, datalo, TCG_TMP1);
tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, LO_OFF);
tcg_out_bswap32(s, datahi, TCG_TMP1);
break;
case MO_Q:
tcg_out_opc_imm(s, OPC_LW, datalo, base, LO_OFF);
tcg_out_opc_imm(s, OPC_LW, datahi, base, HI_OFF);
break;
default:
tcg_abort();
}
}
static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
{
TCGReg addr_regl, addr_regh __attribute__((unused));
TCGReg data_regl, data_regh;
TCGMemOp opc;
#if defined(CONFIG_SOFTMMU)
tcg_insn_unit *label_ptr[2];
int mem_index;
TCGMemOp s_bits;
#endif
/* Note that we've eliminated V0 from the output registers,
so we won't overwrite the base register during loading. */
TCGReg base = TCG_REG_V0;
data_regl = *args++;
data_regh = (is_64 ? *args++ : 0);
addr_regl = *args++;
addr_regh = (TARGET_LONG_BITS == 64 ? *args++ : 0);
opc = *args++;
#if defined(CONFIG_SOFTMMU)
mem_index = *args;
s_bits = opc & MO_SIZE;
tcg_out_tlb_load(s, base, addr_regl, addr_regh, mem_index,
s_bits, label_ptr, 1);
tcg_out_qemu_ld_direct(s, data_regl, data_regh, base, opc);
add_qemu_ldst_label(s, 1, opc, data_regl, data_regh, addr_regl, addr_regh,
mem_index, s->code_ptr, label_ptr);
#else
if (GUEST_BASE == 0 && data_regl != addr_regl) {
base = addr_regl;
} else if (GUEST_BASE == (int16_t)GUEST_BASE) {
tcg_out_opc_imm(s, OPC_ADDIU, base, addr_regl, GUEST_BASE);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, base, GUEST_BASE);
tcg_out_opc_reg(s, OPC_ADDU, base, base, addr_regl);
}
tcg_out_qemu_ld_direct(s, data_regl, data_regh, base, opc);
#endif
}
static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg base, TCGMemOp opc)
{
switch (opc) {
case MO_8:
tcg_out_opc_imm(s, OPC_SB, datalo, base, 0);
break;
case MO_16 | MO_BSWAP:
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, datalo, 0xffff);
tcg_out_bswap16(s, TCG_TMP1, TCG_TMP1);
datalo = TCG_TMP1;
/* FALLTHRU */
case MO_16:
tcg_out_opc_imm(s, OPC_SH, datalo, base, 0);
break;
case MO_32 | MO_BSWAP:
tcg_out_bswap32(s, TCG_TMP1, datalo);
datalo = TCG_TMP1;
/* FALLTHRU */
case MO_32:
tcg_out_opc_imm(s, OPC_SW, datalo, base, 0);
break;
case MO_64 | MO_BSWAP:
tcg_out_bswap32(s, TCG_TMP1, datalo);
tcg_out_opc_imm(s, OPC_SW, TCG_TMP1, base, HI_OFF);
tcg_out_bswap32(s, TCG_TMP1, datahi);
tcg_out_opc_imm(s, OPC_SW, TCG_TMP1, base, LO_OFF);
break;
case MO_64:
tcg_out_opc_imm(s, OPC_SW, datalo, base, LO_OFF);
tcg_out_opc_imm(s, OPC_SW, datahi, base, HI_OFF);
break;
default:
tcg_abort();
}
}
static void tcg_out_addsub2(TCGContext *s, TCGReg rl, TCGReg rh, TCGReg al,
TCGReg ah, TCGArg bl, TCGArg bh, bool cbl,
bool cbh, bool is_sub)
{
TCGReg th = TCG_TMP1;
/* If we have a negative constant such that negating it would
make the high part zero, we can (usually) eliminate one insn. */
if (cbl && cbh && bh == -1 && bl != 0) {
bl = -bl;
bh = 0;
is_sub = !is_sub;
}
/* By operating on the high part first, we get to use the final
carry operation to move back from the temporary. */
if (!cbh) {
tcg_out_opc_reg(s, (is_sub ? OPC_SUBU : OPC_ADDU), th, ah, bh);
} else if (bh != 0 || ah == rl) {
tcg_out_opc_imm(s, OPC_ADDIU, th, ah, (is_sub ? -bh : bh));
} else {
th = ah;
}
/* Note that tcg optimization should eliminate the bl == 0 case. */
if (is_sub) {
if (cbl) {
tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, al, bl);
tcg_out_opc_imm(s, OPC_ADDIU, rl, al, -bl);
} else {
tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, al, bl);
tcg_out_opc_reg(s, OPC_SUBU, rl, al, bl);
}
tcg_out_opc_reg(s, OPC_SUBU, rh, th, TCG_TMP0);
} else {
if (cbl) {
tcg_out_opc_imm(s, OPC_ADDIU, rl, al, bl);
tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, rl, bl);
} else {
tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl);
tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, rl, (rl == bl ? al : bl));
}
tcg_out_opc_reg(s, OPC_ADDU, rh, th, TCG_TMP0);
}
}
static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
{
TCGReg addr_regl, addr_regh __attribute__((unused));
TCGReg data_regl, data_regh, base;
TCGMemOp opc;
#if defined(CONFIG_SOFTMMU)
tcg_insn_unit *label_ptr[2];
int mem_index;
TCGMemOp s_bits;
#endif
data_regl = *args++;
data_regh = (is_64 ? *args++ : 0);
addr_regl = *args++;
addr_regh = (TARGET_LONG_BITS == 64 ? *args++ : 0);
opc = *args++;
#if defined(CONFIG_SOFTMMU)
mem_index = *args;
s_bits = opc & 3;
/* Note that we eliminated the helper's address argument,
so we can reuse that for the base. */
base = (TARGET_LONG_BITS == 32 ? TCG_REG_A1 : TCG_REG_A2);
tcg_out_tlb_load(s, base, addr_regl, addr_regh, mem_index,
s_bits, label_ptr, 0);
tcg_out_qemu_st_direct(s, data_regl, data_regh, base, opc);
add_qemu_ldst_label(s, 0, opc, data_regl, data_regh, addr_regl, addr_regh,
mem_index, s->code_ptr, label_ptr);
#else
if (GUEST_BASE == 0) {
base = addr_regl;
} else {
base = TCG_REG_A0;
if (GUEST_BASE == (int16_t)GUEST_BASE) {
tcg_out_opc_imm(s, OPC_ADDIU, base, addr_regl, GUEST_BASE);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, base, GUEST_BASE);
tcg_out_opc_reg(s, OPC_ADDU, base, base, addr_regl);
}
}
tcg_out_qemu_st_direct(s, data_regl, data_regh, base, opc);
#endif
}
static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg *args, const int *const_args)
{
MIPSInsn i1, i2;
TCGArg a0, a1, a2;
int c2;
a0 = args[0];
a1 = args[1];
a2 = args[2];
c2 = const_args[2];
switch (opc) {
case INDEX_op_exit_tb:
{
TCGReg b0 = TCG_REG_ZERO;
if (a0 & ~0xffff) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_V0, a0 & ~0xffff);
b0 = TCG_REG_V0;
}
if (!tcg_out_opc_jmp(s, OPC_J, tb_ret_addr)) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0,
(uintptr_t)tb_ret_addr);
tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0);
}
tcg_out_opc_imm(s, OPC_ORI, TCG_REG_V0, b0, a0 & 0xffff);
}
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_offset) {
/* direct jump method */
s->tb_jmp_offset[a0] = tcg_current_code_size(s);
/* Avoid clobbering the address during retranslation. */
tcg_out32(s, OPC_J | (*(uint32_t *)s->code_ptr & 0x3ffffff));
} else {
/* indirect jump method */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_TMP0, TCG_REG_ZERO,
(uintptr_t)(s->tb_next + a0));
tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0);
}
tcg_out_nop(s);
s->tb_next_offset[a0] = tcg_current_code_size(s);
break;
case INDEX_op_br:
tcg_out_brcond(s, TCG_COND_EQ, TCG_REG_ZERO, TCG_REG_ZERO, a0);
break;
case INDEX_op_ld8u_i32:
i1 = OPC_LBU;
goto do_ldst;
case INDEX_op_ld8s_i32:
i1 = OPC_LB;
goto do_ldst;
case INDEX_op_ld16u_i32:
i1 = OPC_LHU;
goto do_ldst;
case INDEX_op_ld16s_i32:
i1 = OPC_LH;
goto do_ldst;
case INDEX_op_ld_i32:
i1 = OPC_LW;
goto do_ldst;
case INDEX_op_st8_i32:
i1 = OPC_SB;
goto do_ldst;
case INDEX_op_st16_i32:
i1 = OPC_SH;
goto do_ldst;
case INDEX_op_st_i32:
i1 = OPC_SW;
do_ldst:
tcg_out_ldst(s, i1, a0, a1, a2);
break;
case INDEX_op_add_i32:
i1 = OPC_ADDU, i2 = OPC_ADDIU;
goto do_binary;
case INDEX_op_or_i32:
i1 = OPC_OR, i2 = OPC_ORI;
goto do_binary;
case INDEX_op_xor_i32:
i1 = OPC_XOR, i2 = OPC_XORI;
do_binary:
if (c2) {
tcg_out_opc_imm(s, i2, a0, a1, a2);
break;
}
do_binaryv:
tcg_out_opc_reg(s, i1, a0, a1, a2);
break;
case INDEX_op_sub_i32:
if (c2) {
tcg_out_opc_imm(s, OPC_ADDIU, a0, a1, -a2);
break;
}
i1 = OPC_SUBU;
goto do_binary;
case INDEX_op_and_i32:
if (c2 && a2 != (uint16_t)a2) {
int msb = ctz32(~a2) - 1;
assert(use_mips32r2_instructions);
assert(is_p2m1(a2));
tcg_out_opc_bf(s, OPC_EXT, a0, a1, msb, 0);
break;
}
i1 = OPC_AND, i2 = OPC_ANDI;
goto do_binary;
case INDEX_op_nor_i32:
i1 = OPC_NOR;
goto do_binaryv;
case INDEX_op_mul_i32:
if (use_mips32_instructions) {
tcg_out_opc_reg(s, OPC_MUL, a0, a1, a2);
break;
}
i1 = OPC_MULT, i2 = OPC_MFLO;
goto do_hilo1;
case INDEX_op_mulsh_i32:
i1 = OPC_MULT, i2 = OPC_MFHI;
goto do_hilo1;
case INDEX_op_muluh_i32:
i1 = OPC_MULTU, i2 = OPC_MFHI;
goto do_hilo1;
case INDEX_op_div_i32:
i1 = OPC_DIV, i2 = OPC_MFLO;
goto do_hilo1;
case INDEX_op_divu_i32:
i1 = OPC_DIVU, i2 = OPC_MFLO;
goto do_hilo1;
case INDEX_op_rem_i32:
i1 = OPC_DIV, i2 = OPC_MFHI;
goto do_hilo1;
case INDEX_op_remu_i32:
i1 = OPC_DIVU, i2 = OPC_MFHI;
do_hilo1:
tcg_out_opc_reg(s, i1, 0, a1, a2);
tcg_out_opc_reg(s, i2, a0, 0, 0);
break;
case INDEX_op_muls2_i32:
i1 = OPC_MULT;
goto do_hilo2;
case INDEX_op_mulu2_i32:
i1 = OPC_MULTU;
do_hilo2:
tcg_out_opc_reg(s, i1, 0, a2, args[3]);
tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0);
tcg_out_opc_reg(s, OPC_MFHI, a1, 0, 0);
break;
case INDEX_op_not_i32:
i1 = OPC_NOR;
goto do_unary;
case INDEX_op_bswap16_i32:
i1 = OPC_WSBH;
goto do_unary;
case INDEX_op_ext8s_i32:
i1 = OPC_SEB;
goto do_unary;
case INDEX_op_ext16s_i32:
i1 = OPC_SEH;
do_unary:
tcg_out_opc_reg(s, i1, a0, TCG_REG_ZERO, a1);
break;
case INDEX_op_sar_i32:
i1 = OPC_SRAV, i2 = OPC_SRA;
goto do_shift;
case INDEX_op_shl_i32:
i1 = OPC_SLLV, i2 = OPC_SLL;
goto do_shift;
case INDEX_op_shr_i32:
i1 = OPC_SRLV, i2 = OPC_SRL;
goto do_shift;
case INDEX_op_rotr_i32:
i1 = OPC_ROTRV, i2 = OPC_ROTR;
do_shift:
if (c2) {
tcg_out_opc_sa(s, i2, a0, a1, a2);
} else {
tcg_out_opc_reg(s, i1, a0, a2, a1);
}
break;
case INDEX_op_rotl_i32:
if (c2) {
tcg_out_opc_sa(s, OPC_ROTR, a0, a1, 32 - a2);
} else {
tcg_out_opc_reg(s, OPC_SUBU, TCG_TMP0, TCG_REG_ZERO, a2);
tcg_out_opc_reg(s, OPC_ROTRV, a0, TCG_TMP0, a1);
}
break;
case INDEX_op_bswap32_i32:
tcg_out_opc_reg(s, OPC_WSBH, a0, 0, a1);
tcg_out_opc_sa(s, OPC_ROTR, a0, a0, 16);
break;
case INDEX_op_deposit_i32:
tcg_out_opc_bf(s, OPC_INS, a0, a2, args[3] + args[4] - 1, args[3]);
break;
case INDEX_op_brcond_i32:
tcg_out_brcond(s, a2, a0, a1, args[3]);
break;
case INDEX_op_brcond2_i32:
tcg_out_brcond2(s, args[4], a0, a1, a2, args[3], args[5]);
break;
case INDEX_op_movcond_i32:
tcg_out_movcond(s, args[5], a0, a1, a2, args[3]);
break;
case INDEX_op_setcond_i32:
tcg_out_setcond(s, args[3], a0, a1, a2);
break;
case INDEX_op_setcond2_i32:
tcg_out_setcond2(s, args[5], a0, a1, a2, args[3], args[4]);
break;
case INDEX_op_qemu_ld_i32:
tcg_out_qemu_ld(s, args, false);
break;
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, args, true);
break;
case INDEX_op_qemu_st_i32:
tcg_out_qemu_st(s, args, false);
break;
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, args, true);
break;
case INDEX_op_add2_i32:
tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5],
const_args[4], const_args[5], false);
break;
case INDEX_op_sub2_i32:
tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5],
const_args[4], const_args[5], true);
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
case INDEX_op_call: /* Always emitted via tcg_out_call. */
default:
tcg_abort();
}
}
static const TCGTargetOpDef mips_op_defs[] = {
{ INDEX_op_exit_tb, { } },
{ INDEX_op_goto_tb, { } },
{ INDEX_op_br, { } },
{ INDEX_op_ld8u_i32, { "r", "r" } },
{ INDEX_op_ld8s_i32, { "r", "r" } },
{ INDEX_op_ld16u_i32, { "r", "r" } },
{ INDEX_op_ld16s_i32, { "r", "r" } },
{ INDEX_op_ld_i32, { "r", "r" } },
{ INDEX_op_st8_i32, { "rZ", "r" } },
{ INDEX_op_st16_i32, { "rZ", "r" } },
{ INDEX_op_st_i32, { "rZ", "r" } },
{ INDEX_op_add_i32, { "r", "rZ", "rJ" } },
{ INDEX_op_mul_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_muls2_i32, { "r", "r", "rZ", "rZ" } },
{ INDEX_op_mulu2_i32, { "r", "r", "rZ", "rZ" } },
{ INDEX_op_mulsh_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_muluh_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_div_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_divu_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_rem_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_remu_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_sub_i32, { "r", "rZ", "rN" } },
{ INDEX_op_and_i32, { "r", "rZ", "rIK" } },
{ INDEX_op_nor_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_not_i32, { "r", "rZ" } },
{ INDEX_op_or_i32, { "r", "rZ", "rIZ" } },
{ INDEX_op_xor_i32, { "r", "rZ", "rIZ" } },
{ INDEX_op_shl_i32, { "r", "rZ", "ri" } },
{ INDEX_op_shr_i32, { "r", "rZ", "ri" } },
{ INDEX_op_sar_i32, { "r", "rZ", "ri" } },
{ INDEX_op_rotr_i32, { "r", "rZ", "ri" } },
{ INDEX_op_rotl_i32, { "r", "rZ", "ri" } },
{ INDEX_op_bswap16_i32, { "r", "r" } },
{ INDEX_op_bswap32_i32, { "r", "r" } },
{ INDEX_op_ext8s_i32, { "r", "rZ" } },
{ INDEX_op_ext16s_i32, { "r", "rZ" } },
{ INDEX_op_deposit_i32, { "r", "0", "rZ" } },
{ INDEX_op_brcond_i32, { "rZ", "rZ" } },
{ INDEX_op_movcond_i32, { "r", "rZ", "rZ", "rZ", "0" } },
{ INDEX_op_setcond_i32, { "r", "rZ", "rZ" } },
{ INDEX_op_setcond2_i32, { "r", "rZ", "rZ", "rZ", "rZ" } },
{ INDEX_op_add2_i32, { "r", "r", "rZ", "rZ", "rN", "rN" } },
{ INDEX_op_sub2_i32, { "r", "r", "rZ", "rZ", "rN", "rN" } },
{ INDEX_op_brcond2_i32, { "rZ", "rZ", "rZ", "rZ" } },
#if TARGET_LONG_BITS == 32
{ INDEX_op_qemu_ld_i32, { "L", "lZ" } },
{ INDEX_op_qemu_st_i32, { "SZ", "SZ" } },
{ INDEX_op_qemu_ld_i64, { "L", "L", "lZ" } },
{ INDEX_op_qemu_st_i64, { "SZ", "SZ", "SZ" } },
#else
{ INDEX_op_qemu_ld_i32, { "L", "lZ", "lZ" } },
{ INDEX_op_qemu_st_i32, { "SZ", "SZ", "SZ" } },
{ INDEX_op_qemu_ld_i64, { "L", "L", "lZ", "lZ" } },
{ INDEX_op_qemu_st_i64, { "SZ", "SZ", "SZ", "SZ" } },
#endif
{ -1 },
};
static int tcg_target_callee_save_regs[] = {
TCG_REG_S0, /* used for the global env (TCG_AREG0) */
TCG_REG_S1,
TCG_REG_S2,
TCG_REG_S3,
TCG_REG_S4,
TCG_REG_S5,
TCG_REG_S6,
TCG_REG_S7,
TCG_REG_S8,
TCG_REG_RA, /* should be last for ABI compliance */
};
/* The Linux kernel doesn't provide any information about the available
instruction set. Probe it using a signal handler. */
#include <signal.h>
#ifndef use_movnz_instructions
bool use_movnz_instructions = false;
#endif
#ifndef use_mips32_instructions
bool use_mips32_instructions = false;
#endif
#ifndef use_mips32r2_instructions
bool use_mips32r2_instructions = false;
#endif
static volatile sig_atomic_t got_sigill;
static void sigill_handler(int signo, siginfo_t *si, void *data)
{
/* Skip the faulty instruction */
ucontext_t *uc = (ucontext_t *)data;
uc->uc_mcontext.pc += 4;
got_sigill = 1;
}
static void tcg_target_detect_isa(void)
{
struct sigaction sa_old, sa_new;
memset(&sa_new, 0, sizeof(sa_new));
sa_new.sa_flags = SA_SIGINFO;
sa_new.sa_sigaction = sigill_handler;
sigaction(SIGILL, &sa_new, &sa_old);
/* Probe for movn/movz, necessary to implement movcond. */
#ifndef use_movnz_instructions
got_sigill = 0;
asm volatile(".set push\n"
".set mips32\n"
"movn $zero, $zero, $zero\n"
"movz $zero, $zero, $zero\n"
".set pop\n"
: : : );
use_movnz_instructions = !got_sigill;
#endif
/* Probe for MIPS32 instructions. As no subsetting is allowed
by the specification, it is only necessary to probe for one
of the instructions. */
#ifndef use_mips32_instructions
got_sigill = 0;
asm volatile(".set push\n"
".set mips32\n"
"mul $zero, $zero\n"
".set pop\n"
: : : );
use_mips32_instructions = !got_sigill;
#endif
/* Probe for MIPS32r2 instructions if MIPS32 instructions are
available. As no subsetting is allowed by the specification,
it is only necessary to probe for one of the instructions. */
#ifndef use_mips32r2_instructions
if (use_mips32_instructions) {
got_sigill = 0;
asm volatile(".set push\n"
".set mips32r2\n"
"seb $zero, $zero\n"
".set pop\n"
: : : );
use_mips32r2_instructions = !got_sigill;
}
#endif
sigaction(SIGILL, &sa_old, NULL);
}
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int i, frame_size;
/* reserve some stack space, also for TCG temps. */
frame_size = ARRAY_SIZE(tcg_target_callee_save_regs) * 4
+ TCG_STATIC_CALL_ARGS_SIZE
+ CPU_TEMP_BUF_NLONGS * sizeof(long);
frame_size = (frame_size + TCG_TARGET_STACK_ALIGN - 1) &
~(TCG_TARGET_STACK_ALIGN - 1);
tcg_set_frame(s, TCG_REG_SP, ARRAY_SIZE(tcg_target_callee_save_regs) * 4
+ TCG_STATIC_CALL_ARGS_SIZE,
CPU_TEMP_BUF_NLONGS * sizeof(long));
/* TB prologue */
tcg_out_addi(s, TCG_REG_SP, -frame_size);
for(i = 0 ; i < ARRAY_SIZE(tcg_target_callee_save_regs) ; i++) {
tcg_out_st(s, TCG_TYPE_I32, tcg_target_callee_save_regs[i],
TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE + i * 4);
}
/* Call generated code */
tcg_out_opc_reg(s, OPC_JR, 0, tcg_target_call_iarg_regs[1], 0);
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
tb_ret_addr = s->code_ptr;
/* TB epilogue */
for(i = 0 ; i < ARRAY_SIZE(tcg_target_callee_save_regs) ; i++) {
tcg_out_ld(s, TCG_TYPE_I32, tcg_target_callee_save_regs[i],
TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE + i * 4);
}
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
tcg_out_addi(s, TCG_REG_SP, frame_size);
}
static void tcg_target_init(TCGContext *s)
{
tcg_target_detect_isa();
tcg_regset_set(tcg_target_available_regs[TCG_TYPE_I32], 0xffffffff);
tcg_regset_set(tcg_target_call_clobber_regs,
(1 << TCG_REG_V0) |
(1 << TCG_REG_V1) |
(1 << TCG_REG_A0) |
(1 << TCG_REG_A1) |
(1 << TCG_REG_A2) |
(1 << TCG_REG_A3) |
(1 << TCG_REG_T0) |
(1 << TCG_REG_T1) |
(1 << TCG_REG_T2) |
(1 << TCG_REG_T3) |
(1 << TCG_REG_T4) |
(1 << TCG_REG_T5) |
(1 << TCG_REG_T6) |
(1 << TCG_REG_T7) |
(1 << TCG_REG_T8) |
(1 << TCG_REG_T9));
tcg_regset_clear(s->reserved_regs);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_ZERO); /* zero register */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_K0); /* kernel use only */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_K1); /* kernel use only */
tcg_regset_set_reg(s->reserved_regs, TCG_TMP0); /* internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_TMP1); /* internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_RA); /* return address */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); /* stack pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_GP); /* global pointer */
tcg_add_target_add_op_defs(mips_op_defs);
}
void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
{
uint32_t *ptr = (uint32_t *)jmp_addr;
*ptr = deposit32(*ptr, 0, 26, addr >> 2);
flush_icache_range(jmp_addr, jmp_addr + 4);
}