unicorn/bindings/python/sample_x86.py

542 lines
17 KiB
Python
Executable file

#!/usr/bin/env python
# Sample code for X86 of Unicorn. Nguyen Anh Quynh <aquynh@gmail.com>
from __future__ import print_function
from unicorn import *
from unicorn.x86_const import *
X86_CODE32 = b"\x41\x4a\x66\x0f\xef\xc1" # INC ecx; DEC edx; PXOR xmm0, xmm1
X86_CODE32_LOOP = b"\x41\x4a\xeb\xfe" # INC ecx; DEC edx; JMP self-loop
X86_CODE32_MEM_READ = b"\x8B\x0D\xAA\xAA\xAA\xAA\x41\x4a" # mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx
X86_CODE32_MEM_WRITE = b"\x89\x0D\xAA\xAA\xAA\xAA\x41\x4a" # mov [0xaaaaaaaa], ecx; INC ecx; DEC edx
X86_CODE64 = b"\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E\x09\x3C\x59"
X86_CODE32_INOUT = b"\x41\xE4\x3F\x4a\xE6\x46\x43" # INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46, AL; INC ebx
X86_CODE64_SYSCALL = b'\x0f\x05' # SYSCALL
X86_CODE16 = b'\x00\x00' # add byte ptr [bx + si], al
# memory address where emulation starts
ADDRESS = 0x1000000
# callback for tracing basic blocks
def hook_block(uc, address, size, user_data):
print(">>> Tracing basic block at 0x%x, block size = 0x%x" %(address, size))
# callback for tracing instructions
def hook_code(uc, address, size, user_data):
print(">>> Tracing instruction at 0x%x, instruction size = %u" %(address, size))
#eip = uc.reg_read(UC_X86_REG_EIP)
#print(">>> EIP = 0x%x" %(eip))
# callback for tracing invalid memory access (READ or WRITE)
def hook_mem_invalid(uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE_UNMAPPED:
print(">>> Missing memory is being WRITE at 0x%x, data size = %u, data value = 0x%x" \
%(address, size, value))
# map this memory in with 2MB in size
uc.mem_map(0xaaaa0000, 2 * 1024*1024)
# return True to indicate we want to continue emulation
return True
else:
# return False to indicate we want to stop emulation
return False
# callback for tracing memory access (READ or WRITE)
def hook_mem_access(uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE:
print(">>> Memory is being WRITE at 0x%x, data size = %u, data value = 0x%x" \
%(address, size, value))
else: # READ
print(">>> Memory is being READ at 0x%x, data size = %u" \
%(address, size))
# callback for IN instruction
def hook_in(uc, port, size, user_data):
eip = uc.reg_read(UC_X86_REG_EIP)
print("--- reading from port 0x%x, size: %u, address: 0x%x" %(port, size, eip))
if size == 1:
# read 1 byte to AL
return 0xf1
if size == 2:
# read 2 byte to AX
return 0xf2
if size == 4:
# read 4 byte to EAX
return 0xf4
# we should never reach here
return 0
# callback for OUT instruction
def hook_out(uc, port, size, value, user_data):
eip = uc.reg_read(UC_X86_REG_EIP)
print("--- writing to port 0x%x, size: %u, value: 0x%x, address: 0x%x" %(port, size, value, eip))
# confirm that value is indeed the value of AL/AX/EAX
v = 0
if size == 1:
# read 1 byte in AL
v = uc.reg_read(UC_X86_REG_AL)
if size == 2:
# read 2 bytes in AX
v = uc.reg_read(UC_X86_REG_AX)
if size == 4:
# read 4 bytes in EAX
v = uc.reg_read(UC_X86_REG_EAX)
print("--- register value = 0x%x" %v)
# Test X86 32 bit
def test_i386():
print("Emulate i386 code")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
mu.reg_write(UC_X86_REG_XMM0, 0x000102030405060708090a0b0c0d0e0f)
mu.reg_write(UC_X86_REG_XMM1, 0x00102030405060708090a0b0c0d0e0f0)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
r_xmm0 = mu.reg_read(UC_X86_REG_XMM0)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
print(">>> XMM0 = 0x%x" %r_xmm0)
# read from memory
tmp = mu.mem_read(ADDRESS, 2)
print(">>> Read 2 bytes from [0x%x] =" %(ADDRESS), end="")
for i in tmp:
print(" 0x%x" %i, end="")
print("")
except UcError as e:
print("ERROR: %s" % e)
def test_i386_loop():
print("Emulate i386 code with infinite loop - wait for 2 seconds then stop emulation")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_LOOP)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_LOOP), 2 * UC_SECOND_SCALE)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
except UcError as e:
print("ERROR: %s" % e)
def test_i386_invalid_mem_read():
print("Emulate i386 code that read from invalid memory")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_MEM_READ)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_MEM_READ))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
except UcError as e:
print("ERROR: %s" % e)
def test_i386_invalid_mem_write():
print("Emulate i386 code that write to invalid memory")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_MEM_WRITE)
# initialize machine registers
mu.reg_write(UC_X86_REG_ECX, 0x1234)
mu.reg_write(UC_X86_REG_EDX, 0x7890)
# tracing all basic blocks with customized callback
#mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
#mu.hook_add(UC_HOOK_CODE, hook_code)
# intercept invalid memory events
mu.hook_add(UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, hook_mem_invalid)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_MEM_WRITE))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_edx = mu.reg_read(UC_X86_REG_EDX)
print(">>> ECX = 0x%x" %r_ecx)
print(">>> EDX = 0x%x" %r_edx)
try:
# read from memory
print(">>> Read 4 bytes from [0x%x] = " %(0xaaaaaaaa), end="")
tmp = mu.mem_read(0xaaaaaaaa, 4)
for i in tmp:
print(" 0x%x" %i, end="")
print("")
print(">>> Read 4 bytes from [0x%x] = " %(0xffffffaa), end="")
tmp = mu.mem_read(0xffffffaa, 4)
for i in tmp:
print(" 0x%x" %i, end="")
print("")
except UcError as e:
print("ERROR: %s" % e)
except UcError as e:
print("ERROR: %s" % e)
# Test X86 32 bit with IN/OUT instruction
def test_i386_inout():
print("Emulate i386 code with IN/OUT instructions")
try:
# Initialize emulator in X86-32bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE32_INOUT)
# initialize machine registers
mu.reg_write(UC_X86_REG_EAX, 0x1234)
mu.reg_write(UC_X86_REG_ECX, 0x6789)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code)
# handle IN & OUT instruction
mu.hook_add(UC_HOOK_INSN, hook_in, None, 1, 0, UC_X86_INS_IN)
mu.hook_add(UC_HOOK_INSN, hook_out, None, 1, 0, UC_X86_INS_OUT)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE32_INOUT))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
r_ecx = mu.reg_read(UC_X86_REG_ECX)
r_eax = mu.reg_read(UC_X86_REG_EAX)
print(">>> EAX = 0x%x" %r_eax)
print(">>> ECX = 0x%x" %r_ecx)
except UcError as e:
print("ERROR: %s" % e)
def test_i386_context_save():
print("Save/restore CPU context in opaque blob")
address = 0
code = '\x40' # inc eax
try:
# Initialize emulator
mu = Uc(UC_ARCH_X86, UC_MODE_32)
# map 8KB memory for this emulation
mu.mem_map(address, 8 * 1024, UC_PROT_ALL)
# write machine code to be emulated to memory
mu.mem_write(address, code)
print(">>> set eax to 1")
mu.reg_write(UC_X86_REG_EAX, 1)
print(">>> execute 'inc eax'")
mu.emu_start(address, address+1)
print(">>> save the CPU context")
saved_context = mu.context_save()
print(">>> execute 'inc eax'")
mu.emu_start(address, address+1)
print(">>> assert eax == 3")
assert mu.reg_read(UC_X86_REG_EAX) == 3
print(">>> restore the CPU context")
mu.context_restore(saved_context)
print(">>> assert eax == 2")
assert mu.reg_read(UC_X86_REG_EAX) == 2
print(">>> execute 'inc eax'")
mu.emu_start(address, address+1)
print(">>> assert eax == 3")
assert mu.reg_read(UC_X86_REG_EAX) == 3
print(">>> restore the CPU context")
mu.context_restore(saved_context)
print(">>> assert eax == 2")
assert mu.reg_read(UC_X86_REG_EAX) == 2
except UcError as e:
print("ERROR: %s" % e)
def test_x86_64():
print("Emulate x86_64 code")
try:
# Initialize emulator in X86-64bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_64)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE64)
# initialize machine registers
mu.reg_write(UC_X86_REG_RAX, 0x71f3029efd49d41d)
mu.reg_write(UC_X86_REG_RBX, 0xd87b45277f133ddb)
mu.reg_write(UC_X86_REG_RCX, 0xab40d1ffd8afc461)
mu.reg_write(UC_X86_REG_RDX, 0x919317b4a733f01)
mu.reg_write(UC_X86_REG_RSI, 0x4c24e753a17ea358)
mu.reg_write(UC_X86_REG_RDI, 0xe509a57d2571ce96)
mu.reg_write(UC_X86_REG_R8, 0xea5b108cc2b9ab1f)
mu.reg_write(UC_X86_REG_R9, 0x19ec097c8eb618c1)
mu.reg_write(UC_X86_REG_R10, 0xec45774f00c5f682)
mu.reg_write(UC_X86_REG_R11, 0xe17e9dbec8c074aa)
mu.reg_write(UC_X86_REG_R12, 0x80f86a8dc0f6d457)
mu.reg_write(UC_X86_REG_R13, 0x48288ca5671c5492)
mu.reg_write(UC_X86_REG_R14, 0x595f72f6e4017f6e)
mu.reg_write(UC_X86_REG_R15, 0x1efd97aea331cccc)
# setup stack
mu.reg_write(UC_X86_REG_RSP, ADDRESS + 0x200000)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing all instructions in range [ADDRESS, ADDRESS+20]
mu.hook_add(UC_HOOK_CODE, hook_code, None, ADDRESS, ADDRESS+20)
# tracing all memory READ & WRITE access
mu.hook_add(UC_HOOK_MEM_WRITE, hook_mem_access)
mu.hook_add(UC_HOOK_MEM_READ, hook_mem_access)
# actually you can also use READ_WRITE to trace all memory access
#mu.hook_add(UC_HOOK_MEM_READ | UC_HOOK_MEM_WRITE, hook_mem_access)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE64))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
rax = mu.reg_read(UC_X86_REG_RAX)
rbx = mu.reg_read(UC_X86_REG_RBX)
rcx = mu.reg_read(UC_X86_REG_RCX)
rdx = mu.reg_read(UC_X86_REG_RDX)
rsi = mu.reg_read(UC_X86_REG_RSI)
rdi = mu.reg_read(UC_X86_REG_RDI)
r8 = mu.reg_read(UC_X86_REG_R8)
r9 = mu.reg_read(UC_X86_REG_R9)
r10 = mu.reg_read(UC_X86_REG_R10)
r11 = mu.reg_read(UC_X86_REG_R11)
r12 = mu.reg_read(UC_X86_REG_R12)
r13 = mu.reg_read(UC_X86_REG_R13)
r14 = mu.reg_read(UC_X86_REG_R14)
r15 = mu.reg_read(UC_X86_REG_R15)
print(">>> RAX = %x" %rax)
print(">>> RBX = %x" %rbx)
print(">>> RCX = %x" %rcx)
print(">>> RDX = %x" %rdx)
print(">>> RSI = %x" %rsi)
print(">>> RDI = %x" %rdi)
print(">>> R8 = %x" %r8)
print(">>> R9 = %x" %r9)
print(">>> R10 = %x" %r10)
print(">>> R11 = %x" %r11)
print(">>> R12 = %x" %r12)
print(">>> R13 = %x" %r13)
print(">>> R14 = %x" %r14)
print(">>> R15 = %x" %r15)
#BUG
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE64))
except UcError as e:
print("ERROR: %s" % e)
def test_x86_64_syscall():
print("Emulate x86_64 code with 'syscall' instruction")
try:
# Initialize emulator in X86-64bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_64)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, X86_CODE64_SYSCALL)
def hook_syscall(mu, user_data):
rax = mu.reg_read(UC_X86_REG_RAX)
if rax == 0x100:
mu.reg_write(UC_X86_REG_RAX, 0x200)
else:
print('ERROR: was not expecting rax=%d in syscall' % rax)
# hook interrupts for syscall
mu.hook_add(UC_HOOK_INSN, hook_syscall, None, 1, 0, UC_X86_INS_SYSCALL)
# syscall handler is expecting rax=0x100
mu.reg_write(UC_X86_REG_RAX, 0x100)
try:
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(X86_CODE64_SYSCALL))
except UcError as e:
print("ERROR: %s" % e)
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
rax = mu.reg_read(UC_X86_REG_RAX)
print(">>> RAX = 0x%x" % rax)
except UcError as e:
print("ERROR: %s" % e)
def test_x86_16():
print("Emulate x86 16-bit code")
try:
# Initialize emulator in X86-16bit mode
mu = Uc(UC_ARCH_X86, UC_MODE_16)
# map 8KB memory for this emulation
mu.mem_map(0, 8 * 1024)
# set CPU registers
mu.reg_write(UC_X86_REG_EAX, 7)
mu.reg_write(UC_X86_REG_EBX, 5)
mu.reg_write(UC_X86_REG_ESI, 6)
# write machine code to be emulated to memory
mu.mem_write(0, X86_CODE16)
# emulate machine code in infinite time
mu.emu_start(0, len(X86_CODE16))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
tmp = mu.mem_read(11, 1)
print("[0x%x] = 0x%x" %(11, tmp[0]))
except UcError as e:
print("ERROR: %s" % e)
if __name__ == '__main__':
test_i386()
print("=" * 20)
test_i386_loop()
print("=" * 20)
test_i386_invalid_mem_read()
print("=" * 20)
test_i386_invalid_mem_write()
print("=" * 20)
test_i386_inout()
print("=" * 20)
test_i386_context_save()
print("=" * 20)
test_x86_64()
print("=" * 20)
test_x86_64_syscall()
print("=" * 20)
test_x86_16()