unicorn/qemu/target/arm/cpu64.c
Ard Biesheuvel f425b6aa81
target/arm: enable user-mode SHA-3, SM3, SM4 and SHA-512 instruction support
Add support for the new ARMv8.2 SHA-3, SM3, SM4 and SHA-512 instructions to
AArch64 user mode emulation.

Backports commit 955f56d44a73d74016b2e71765d984ac7a6db1dc from qemu
2018-03-07 08:58:43 -05:00

300 lines
10 KiB
C

/*
* QEMU AArch64 CPU
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu-common.h"
#include "hw/arm/arm.h"
#include "sysemu/sysemu.h"
static inline void set_feature(CPUARMState *env, int feature)
{
env->features |= 1ULL << feature;
}
static inline QEMU_UNUSED_FUNC void unset_feature(CPUARMState *env, int feature)
{
env->features &= ~(1ULL << feature);
}
#ifndef CONFIG_USER_ONLY
static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Number of processors is in [25:24]; otherwise we RAZ */
return (smp_cpus - 1) << 24;
}
#endif
static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ "L2CTLR_EL1", 0,11,0, 3,1,2, ARM_CP_STATE_AA64,
0, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, a57_a53_l2ctlr_read, arm_cp_write_ignore, },
{ "L2CTLR", 15,9,0, 0,1,2, 0,
0, PL1_RW, 0, NULL, 0, 0, {0, 0},
NULL, a57_a53_l2ctlr_read, arm_cp_write_ignore, },
#endif
{ "L2ECTLR_EL1", 0,11,0, 3,1,3, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "L2ECTLR", 15,9,0, 0,1,3, 0,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "L2ACTLR", 0,15,0, 3,1,0, ARM_CP_STATE_BOTH,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "CPUACTLR_EL1", 0,15,2, 3,1,0, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "CPUACTLR", 15,0,15, 0,0,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0, },
{ "CPUECTLR_EL1", 0,15,2, 3,1,1, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0, },
{ "CPUECTLR", 15,0,15, 0,1,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0, },
{ "CPUMERRSR_EL1", 0,15,2, 3,1,2, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "CPUMERRSR", 15,0,15, 0,2,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0 },
{ "L2MERRSR_EL1", 0,15,2, 3,1,3, ARM_CP_STATE_AA64,
ARM_CP_CONST, PL1_RW, 0, NULL, 0 },
{ "L2MERRSR", 15,0,15, 0,3,0, 0,
ARM_CP_CONST | ARM_CP_64BIT, PL1_RW, 0, NULL, 0 },
REGINFO_SENTINEL
};
static void aarch64_a57_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
cpu->midr = 0x411fd070;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->mvfr0 = 0x10110222;
cpu->mvfr1 = 0x12111111;
cpu->mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->id_isar0 = 0x02101110;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232042;
cpu->id_isar3 = 0x01112131;
cpu->id_isar4 = 0x00011142;
cpu->id_isar5 = 0x00011121;
cpu->id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->pmceid0 = 0x00000000;
cpu->pmceid1 = 0x00000000;
cpu->id_aa64isar0 = 0x00011120;
cpu->id_aa64mmfr0 = 0x00001124;
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
}
static void aarch64_a53_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
cpu->dtb_compatible = "arm,cortex-a53";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
cpu->midr = 0x410fd034;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034070;
cpu->mvfr0 = 0x10110222;
cpu->mvfr1 = 0x12111111;
cpu->mvfr2 = 0x00000043;
cpu->ctr = 0x84448004; /* L1Ip = VIPT */
cpu->reset_sctlr = 0x00c50838;
cpu->id_pfr0 = 0x00000131;
cpu->id_pfr1 = 0x00011011;
cpu->id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->id_mmfr0 = 0x10101105;
cpu->id_mmfr1 = 0x40000000;
cpu->id_mmfr2 = 0x01260000;
cpu->id_mmfr3 = 0x02102211;
cpu->id_isar0 = 0x02101110;
cpu->id_isar1 = 0x13112111;
cpu->id_isar2 = 0x21232042;
cpu->id_isar3 = 0x01112131;
cpu->id_isar4 = 0x00011142;
cpu->id_isar5 = 0x00011121;
cpu->id_aa64pfr0 = 0x00002222;
cpu->id_aa64dfr0 = 0x10305106;
cpu->id_aa64isar0 = 0x00011120;
cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
cpu->dbgdidr = 0x3516d000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
}
#ifdef CONFIG_USER_ONLY
static void aarch64_any_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
ARMCPU *cpu = ARM_CPU(uc, obj);
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_VFP4);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_V8_AES);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
set_feature(&cpu->env, ARM_FEATURE_CRC);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA512);
set_feature(&cpu->env, ARM_FEATURE_V8_SHA3);
set_feature(&cpu->env, ARM_FEATURE_V8_SM3);
set_feature(&cpu->env, ARM_FEATURE_V8_SM4);
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
}
#endif
typedef struct ARMCPUInfo {
const char *name;
void (*initfn)(struct uc_struct *uc, Object *obj, void *opaque);
void (*class_init)(struct uc_struct *uc, ObjectClass *oc, void *data);
} ARMCPUInfo;
static const ARMCPUInfo aarch64_cpus[] = {
{ "cortex-a57", aarch64_a57_initfn },
{ "cortex-a53", aarch64_a53_initfn },
#ifdef CONFIG_USER_ONLY
{ "any", aarch64_any_initfn },
#endif
{ NULL }
};
static QEMU_UNUSED_FUNC bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(NULL, obj);
return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
}
static void aarch64_cpu_initfn(struct uc_struct *uc, Object *obj, void *opaque)
{
}
static void aarch64_cpu_finalizefn(struct uc_struct *uc, Object *obj, void *opaque)
{
}
static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs->uc, cs);
/* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
* (Otherwise we would need to use synchronize_from_tb instead.)
*/
if (is_a64(&cpu->env)) {
cpu->env.pc = value;
} else {
cpu->env.regs[15] = value;
}
}
static void aarch64_cpu_class_init(struct uc_struct *uc, ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(uc, oc);
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->set_pc = aarch64_cpu_set_pc;
}
static void aarch64_cpu_register(struct uc_struct *uc, const ARMCPUInfo *info)
{
TypeInfo type_info = { 0 };
type_info.parent = TYPE_AARCH64_CPU;
type_info.instance_size = sizeof(ARMCPU);
type_info.instance_init = info->initfn;
type_info.class_size = sizeof(ARMCPUClass);
type_info.class_init = info->class_init;
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(uc, &type_info);
g_free((void *)type_info.name);
}
void aarch64_cpu_register_types(void *opaque)
{
const ARMCPUInfo *info = aarch64_cpus;
static TypeInfo aarch64_cpu_type_info = { 0 };
aarch64_cpu_type_info.name = TYPE_AARCH64_CPU;
aarch64_cpu_type_info.parent = TYPE_ARM_CPU;
aarch64_cpu_type_info.instance_size = sizeof(ARMCPU);
aarch64_cpu_type_info.instance_init = aarch64_cpu_initfn;
aarch64_cpu_type_info.instance_finalize = aarch64_cpu_finalizefn;
aarch64_cpu_type_info.abstract = true;
aarch64_cpu_type_info.class_size = sizeof(AArch64CPUClass);
aarch64_cpu_type_info.class_init = aarch64_cpu_class_init;
type_register_static(opaque, &aarch64_cpu_type_info);
while (info->name) {
aarch64_cpu_register(opaque, info);
info++;
}
}